| L(s) = 1 | + 3·5-s − 4·7-s + 9·11-s + 9·13-s − 3·17-s + 19-s − 3·23-s + 25-s + 9·29-s − 16·31-s − 12·35-s + 11·37-s − 3·41-s − 15·43-s − 24·47-s + 9·49-s − 3·53-s + 27·55-s + 24·59-s + 27·65-s − 21·73-s − 36·77-s + 9·83-s − 9·85-s + 9·89-s − 36·91-s + 3·95-s + ⋯ |
| L(s) = 1 | + 1.34·5-s − 1.51·7-s + 2.71·11-s + 2.49·13-s − 0.727·17-s + 0.229·19-s − 0.625·23-s + 1/5·25-s + 1.67·29-s − 2.87·31-s − 2.02·35-s + 1.80·37-s − 0.468·41-s − 2.28·43-s − 3.50·47-s + 9/7·49-s − 0.412·53-s + 3.64·55-s + 3.12·59-s + 3.34·65-s − 2.45·73-s − 4.10·77-s + 0.987·83-s − 0.976·85-s + 0.953·89-s − 3.77·91-s + 0.307·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.787624378\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.787624378\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.965137907048263139108460575768, −8.589008449866095544237034223878, −8.464932590734321842621488931814, −7.911972630923380182986207603819, −7.07801614677833901460427683945, −6.77068101348321959252142721420, −6.60361958078032421035105611869, −6.26594884693166111284784413966, −5.91917363762003849942154003042, −5.90940285426492562297835219512, −5.13862000974429832960731417428, −4.55742354540754394443417526881, −4.06115362055983740811594091855, −3.62294625780427235763309904170, −3.41358436955173651121436497908, −3.12282023439284920043180058684, −2.04660191587391889708819330559, −1.75039249150844536994762997677, −1.38100492058165702293922969723, −0.63160167226513536419312893279,
0.63160167226513536419312893279, 1.38100492058165702293922969723, 1.75039249150844536994762997677, 2.04660191587391889708819330559, 3.12282023439284920043180058684, 3.41358436955173651121436497908, 3.62294625780427235763309904170, 4.06115362055983740811594091855, 4.55742354540754394443417526881, 5.13862000974429832960731417428, 5.90940285426492562297835219512, 5.91917363762003849942154003042, 6.26594884693166111284784413966, 6.60361958078032421035105611869, 6.77068101348321959252142721420, 7.07801614677833901460427683945, 7.911972630923380182986207603819, 8.464932590734321842621488931814, 8.589008449866095544237034223878, 8.965137907048263139108460575768