L(s) = 1 | + 4-s − 4·5-s + 9-s + 16-s − 4·20-s − 10·23-s + 3·25-s − 12·31-s + 36-s − 3·37-s − 4·45-s + 4·47-s − 6·49-s − 13·53-s − 9·59-s + 64-s + 5·67-s − 5·71-s − 4·80-s + 81-s + 6·89-s − 10·92-s − 11·97-s + 3·100-s − 10·113-s + 40·115-s − 11·121-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 1.78·5-s + 1/3·9-s + 1/4·16-s − 0.894·20-s − 2.08·23-s + 3/5·25-s − 2.15·31-s + 1/6·36-s − 0.493·37-s − 0.596·45-s + 0.583·47-s − 6/7·49-s − 1.78·53-s − 1.17·59-s + 1/8·64-s + 0.610·67-s − 0.593·71-s − 0.447·80-s + 1/9·81-s + 0.635·89-s − 1.04·92-s − 1.11·97-s + 3/10·100-s − 0.940·113-s + 3.73·115-s − 121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.99571504092236802548854683223, −6.41242397050757051607678948889, −6.14917164914535400552370500657, −5.62545989747078753972046035447, −5.24245832001532259322742811300, −4.58076471920954526812924324952, −4.27716278845103445126029635429, −3.83173239778994022302064344666, −3.51201581242942984678218297360, −3.18586465218829135965508592426, −2.33575855295120087704049014582, −1.88169413049191545223872676782, −1.32597208483571942111295877695, 0, 0,
1.32597208483571942111295877695, 1.88169413049191545223872676782, 2.33575855295120087704049014582, 3.18586465218829135965508592426, 3.51201581242942984678218297360, 3.83173239778994022302064344666, 4.27716278845103445126029635429, 4.58076471920954526812924324952, 5.24245832001532259322742811300, 5.62545989747078753972046035447, 6.14917164914535400552370500657, 6.41242397050757051607678948889, 6.99571504092236802548854683223