Properties

Label 2.23.k_cs
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $( 1 + 4 x + 23 x^{2} )( 1 + 6 x + 23 x^{2} )$
  $1 + 10 x + 70 x^{2} + 230 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.636928592136$, $\pm0.715122617226$
Angle rank:  $2$ (numerical)
Jacobians:  $24$
Isomorphism classes:  64

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $840$ $302400$ $143113320$ $78624000000$ $41446149868200$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $34$ $570$ $11758$ $280958$ $6439394$ $148000410$ $3404926958$ $78311161918$ $1801150336354$ $41426517521850$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The isogeny class factors as 1.23.e $\times$ 1.23.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ak_cs$2$(not in LMFDB)
2.23.ac_w$2$(not in LMFDB)
2.23.c_w$2$(not in LMFDB)