Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 23 x^{2} )( 1 + 6 x + 23 x^{2} )$ |
$1 + 10 x + 70 x^{2} + 230 x^{3} + 529 x^{4}$ | |
Frobenius angles: | $\pm0.636928592136$, $\pm0.715122617226$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $24$ |
Isomorphism classes: | 64 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $840$ | $302400$ | $143113320$ | $78624000000$ | $41446149868200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $570$ | $11758$ | $280958$ | $6439394$ | $148000410$ | $3404926958$ | $78311161918$ | $1801150336354$ | $41426517521850$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=6 x^6+19 x^5+8 x^4+20 x^3+8 x^2+19 x+6$
- $y^2=8 x^6+12 x^5+11 x^4+7 x^3+15 x^2+13 x+16$
- $y^2=18 x^6+18 x^5+22 x^4+x^3+22 x^2+18 x+18$
- $y^2=13 x^6+4 x^5+10 x^4+11 x^3+10 x^2+4 x+13$
- $y^2=14 x^6+13 x^5+13 x^4+21 x^3+13 x^2+13 x+14$
- $y^2=13 x^6+4 x^5+20 x^4+9 x^3+15 x^2+8 x+8$
- $y^2=12 x^6+6 x^5+x^4+9 x^3+x^2+6 x+12$
- $y^2=3 x^6+2 x^5+12 x^4+7 x^3+12 x^2+2 x+3$
- $y^2=6 x^6+14 x^5+7 x^4+9 x^3+7 x^2+14 x+6$
- $y^2=18 x^6+16 x^5+13 x^4+2 x^3+13 x^2+16 x+18$
- $y^2=22 x^6+12 x^5+14 x^4+18 x^3+14 x^2+12 x+22$
- $y^2=6 x^6+3 x^5+6 x^4+14 x^3+6 x^2+3 x+6$
- $y^2=19 x^5+x^4+8 x^3+13 x^2+14 x$
- $y^2=14 x^5+8 x^4+3 x^3+8 x^2+14 x$
- $y^2=17 x^5+11 x^4+18 x^3+17 x^2+10 x$
- $y^2=8 x^5+14 x^4+x^3+17 x^2+x$
- $y^2=3 x^6+6 x^5+13 x^4+19 x^3+13 x^2+6 x+3$
- $y^2=8 x^6+18 x^5+8 x^4+x^3+x^2+x+9$
- $y^2=8 x^6+11 x^5+20 x^4+19 x^3+20 x^2+11 x+8$
- $y^2=22 x^6+9 x^5+20 x^4+11 x^3+20 x^2+9 x+22$
- $y^2=6 x^6+8 x^5+5 x^4+x^3+5 x^2+8 x+6$
- $y^2=3 x^6+21 x^5+6 x^4+4 x^3+6 x^2+21 x+3$
- $y^2=18 x^6+16 x^5+13 x^4+18 x^3+x^2+2 x+13$
- $y^2=17 x^6+11 x^5+12 x^4+7 x^3+12 x^2+11 x+17$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The isogeny class factors as 1.23.e $\times$ 1.23.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.ak_cs | $2$ | (not in LMFDB) |
2.23.ac_w | $2$ | (not in LMFDB) |
2.23.c_w | $2$ | (not in LMFDB) |