L(s) = 1 | + 2-s + 4-s − 5-s + 8-s − 4·9-s − 10-s + 13-s + 16-s + 2·17-s − 4·18-s − 20-s + 25-s + 26-s − 10·29-s + 32-s + 2·34-s − 4·36-s − 22·37-s − 40-s + 4·45-s − 3·49-s + 50-s + 52-s + 6·53-s − 10·58-s + 7·61-s + 64-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 4/3·9-s − 0.316·10-s + 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.942·18-s − 0.223·20-s + 1/5·25-s + 0.196·26-s − 1.85·29-s + 0.176·32-s + 0.342·34-s − 2/3·36-s − 3.61·37-s − 0.158·40-s + 0.596·45-s − 3/7·49-s + 0.141·50-s + 0.138·52-s + 0.824·53-s − 1.31·58-s + 0.896·61-s + 1/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 244000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.628929762569926660205880139769, −8.408571490757835629058146636142, −7.63624073080312911317235252963, −7.29331265845580693960445095441, −6.85528868560152523617707751234, −6.15194047286183944680216478601, −5.75914806321049392930139336674, −5.20337118481117418379817562909, −4.99674975806443611438491912803, −3.94795329240883412015401848982, −3.61701586749770911627840050699, −3.15369165766996930038763405391, −2.36082179322491379682894367605, −1.56436662930554649630926846640, 0,
1.56436662930554649630926846640, 2.36082179322491379682894367605, 3.15369165766996930038763405391, 3.61701586749770911627840050699, 3.94795329240883412015401848982, 4.99674975806443611438491912803, 5.20337118481117418379817562909, 5.75914806321049392930139336674, 6.15194047286183944680216478601, 6.85528868560152523617707751234, 7.29331265845580693960445095441, 7.63624073080312911317235252963, 8.408571490757835629058146636142, 8.628929762569926660205880139769