Properties

Label 2.67.a_aeh
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 111 x^{2} + 4489 x^{4}$
Frobenius angles:  $\pm0.0946376280512$, $\pm0.905362371949$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{5}, \sqrt{-23})\)
Galois group:  $C_2^2$
Jacobians:  $35$
Isomorphism classes:  42

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4379$ $19175641$ $90458509376$ $405932998632841$ $1822837807213785539$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $68$ $4268$ $300764$ $20144436$ $1350125108$ $90458636582$ $6060711605324$ $406067735809828$ $27206534396294948$ $1822837809875809628$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 35 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67^{2}}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-23})\).
Endomorphism algebra over $\overline{\F}_{67}$
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.aeh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-115}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.a_eh$4$(not in LMFDB)