Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 111 x^{2} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.0946376280512$, $\pm0.905362371949$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{5}, \sqrt{-23})\) |
Galois group: | $C_2^2$ |
Jacobians: | $35$ |
Isomorphism classes: | 42 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4379$ | $19175641$ | $90458509376$ | $405932998632841$ | $1822837807213785539$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4268$ | $300764$ | $20144436$ | $1350125108$ | $90458636582$ | $6060711605324$ | $406067735809828$ | $27206534396294948$ | $1822837809875809628$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 35 curves (of which all are hyperelliptic):
- $y^2=54 x^6+12 x^5+16 x^4+31 x^3+13 x^2+32 x+50$
- $y^2=65 x^6+28 x^5+30 x^4+4 x^3+20 x^2+32 x+41$
- $y^2=63 x^6+56 x^5+60 x^4+8 x^3+40 x^2+64 x+15$
- $y^2=34 x^6+56 x^5+20 x^4+41 x^3+21 x^2+56 x+55$
- $y^2=x^6+45 x^5+40 x^4+15 x^3+42 x^2+45 x+43$
- $y^2=24 x^6+47 x^5+49 x^4+46 x^3+58 x^2+62 x+3$
- $y^2=33 x^6+35 x^5+24 x^4+4 x^3+24 x^2+53 x+60$
- $y^2=66 x^6+3 x^5+48 x^4+8 x^3+48 x^2+39 x+53$
- $y^2=3 x^6+36 x^5+62 x^4+8 x^3+55 x^2+44 x+29$
- $y^2=6 x^6+5 x^5+57 x^4+16 x^3+43 x^2+21 x+58$
- $y^2=41 x^6+59 x^5+51 x^4+44 x^3+39 x^2+45 x+45$
- $y^2=15 x^6+51 x^5+35 x^4+21 x^3+11 x^2+23 x+23$
- $y^2=21 x^6+36 x^5+10 x^4+53 x^3+19 x^2+5 x+66$
- $y^2=42 x^6+5 x^5+20 x^4+39 x^3+38 x^2+10 x+65$
- $y^2=21 x^6+32 x^5+4 x^4+17 x^3+39 x^2+16 x+53$
- $y^2=42 x^6+64 x^5+8 x^4+34 x^3+11 x^2+32 x+39$
- $y^2=30 x^6+43 x^5+36 x^4+10 x^3+11 x^2+66 x+39$
- $y^2=43 x^6+17 x^5+49 x^4+4 x^3+49 x^2+x+21$
- $y^2=19 x^6+34 x^5+31 x^4+8 x^3+31 x^2+2 x+42$
- $y^2=53 x^6+54 x^5+23 x^4+41 x^3+16 x^2+52$
- and 15 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-23})\). |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.aeh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-115}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.a_eh | $4$ | (not in LMFDB) |