Properties

Label 2.17.ac_t
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $( 1 - 5 x + 17 x^{2} )( 1 + 3 x + 17 x^{2} )$
  $1 - 2 x + 19 x^{2} - 34 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.292637436158$, $\pm0.618522015261$
Angle rank:  $2$ (numerical)
Jacobians:  $36$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $273$ $94185$ $24150672$ $7013486025$ $2019629364753$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $324$ $4918$ $83972$ $1422416$ $24124446$ $410277968$ $6975842308$ $118588014166$ $2015994292164$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.af $\times$ 1.17.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ai_bx$2$(not in LMFDB)
2.17.c_t$2$(not in LMFDB)
2.17.i_bx$2$(not in LMFDB)