L(s) = 1 | − 4-s + 2·5-s + 16-s − 2·20-s − 2·23-s − 6·25-s + 12·31-s + 4·37-s + 22·47-s + 10·49-s + 14·53-s − 64-s + 4·67-s + 2·71-s + 2·80-s + 16·89-s + 2·92-s − 16·97-s + 6·100-s + 12·103-s − 4·115-s − 12·124-s − 22·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 0.894·5-s + 1/4·16-s − 0.447·20-s − 0.417·23-s − 6/5·25-s + 2.15·31-s + 0.657·37-s + 3.20·47-s + 10/7·49-s + 1.92·53-s − 1/8·64-s + 0.488·67-s + 0.237·71-s + 0.223·80-s + 1.69·89-s + 0.208·92-s − 1.62·97-s + 3/5·100-s + 1.18·103-s − 0.373·115-s − 1.07·124-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.760130145\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.760130145\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.36678845502632342168672112691, −6.97027963609281113992857566403, −6.37160089892364298835185624337, −6.06117599566428992953359389779, −5.70566913052718427955866520455, −5.44000211394057449132972881597, −4.87996718478394742321924105992, −4.31009317745299156776839117067, −4.03858693828048346840417455721, −3.66088401480996124109882840051, −2.81165514396817769247549221177, −2.38370510004962086118082422263, −2.11136272948185817518093069036, −1.13597066474028100610125612365, −0.66853672832944652911592851410,
0.66853672832944652911592851410, 1.13597066474028100610125612365, 2.11136272948185817518093069036, 2.38370510004962086118082422263, 2.81165514396817769247549221177, 3.66088401480996124109882840051, 4.03858693828048346840417455721, 4.31009317745299156776839117067, 4.87996718478394742321924105992, 5.44000211394057449132972881597, 5.70566913052718427955866520455, 6.06117599566428992953359389779, 6.37160089892364298835185624337, 6.97027963609281113992857566403, 7.36678845502632342168672112691