L(s) = 1 | − 2·2-s + 3·4-s − 5·5-s − 7-s − 4·8-s + 10·10-s + 4·13-s + 2·14-s + 5·16-s + 2·17-s + 4·19-s − 15·20-s − 10·23-s + 10·25-s − 8·26-s − 3·28-s − 3·29-s + 7·31-s − 6·32-s − 4·34-s + 5·35-s − 6·37-s − 8·38-s + 20·40-s + 18·41-s + 20·46-s − 14·47-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 2.23·5-s − 0.377·7-s − 1.41·8-s + 3.16·10-s + 1.10·13-s + 0.534·14-s + 5/4·16-s + 0.485·17-s + 0.917·19-s − 3.35·20-s − 2.08·23-s + 2·25-s − 1.56·26-s − 0.566·28-s − 0.557·29-s + 1.25·31-s − 1.06·32-s − 0.685·34-s + 0.845·35-s − 0.986·37-s − 1.29·38-s + 3.16·40-s + 2.81·41-s + 2.94·46-s − 2.04·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.629439165609285898907644289429, −8.419985502611853216592282046190, −8.016527352112834482785588589697, −7.918534977369073433483616323985, −7.42631435575638246465860390033, −7.35981472977415451118346132051, −6.51556746888671985315295674546, −6.40068605228624602854775948730, −5.87343232190731310890494276227, −5.50129616621454727250192679238, −4.62142174877065404649797762229, −4.33129997194250338568940064008, −3.74933599973590598254477986059, −3.49139028484960511718272025294, −3.06155745138834253671807696552, −2.47878448233966675417859401854, −1.51965085135759145438759090131, −1.16663711169514261162866189356, 0, 0,
1.16663711169514261162866189356, 1.51965085135759145438759090131, 2.47878448233966675417859401854, 3.06155745138834253671807696552, 3.49139028484960511718272025294, 3.74933599973590598254477986059, 4.33129997194250338568940064008, 4.62142174877065404649797762229, 5.50129616621454727250192679238, 5.87343232190731310890494276227, 6.40068605228624602854775948730, 6.51556746888671985315295674546, 7.35981472977415451118346132051, 7.42631435575638246465860390033, 7.918534977369073433483616323985, 8.016527352112834482785588589697, 8.419985502611853216592282046190, 8.629439165609285898907644289429