Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 14 x + 138 x^{2} + 658 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.612950816214$, $\pm0.735257010414$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.424400.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $42$ |
| Isomorphism classes: | 56 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3020$ | $5061520$ | $10667790620$ | $23829231238400$ | $52602282046325500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $2290$ | $102746$ | $4883358$ | $229358742$ | $10779048370$ | $506623525106$ | $23811286879998$ | $1119130493728142$ | $52599132019518450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=41 x^6+25 x^5+33 x^4+22 x^3+27 x^2+20 x$
- $y^2=37 x^6+28 x^5+46 x^4+34 x^3+4 x^2+44 x+40$
- $y^2=6 x^6+7 x^5+41 x^4+14 x^2+34 x+1$
- $y^2=42 x^6+5 x^5+40 x^4+2 x^3+10 x^2+13 x+27$
- $y^2=44 x^6+30 x^5+31 x^4+33 x^3+3 x^2+21 x+13$
- $y^2=14 x^6+12 x^5+8 x^4+17 x^3+31 x^2+7 x+36$
- $y^2=3 x^6+12 x^5+21 x^4+31 x^3+6 x^2+13 x+16$
- $y^2=6 x^6+27 x^5+38 x^4+37 x^3+20 x^2+31 x+37$
- $y^2=40 x^6+20 x^5+40 x^4+20 x^3+46 x^2+41 x+23$
- $y^2=25 x^6+31 x^5+30 x^4+40 x^3+23 x^2+35 x+18$
- $y^2=10 x^5+14 x^4+8 x^3+13 x^2+15 x+34$
- $y^2=31 x^5+23 x^4+35 x^3+32 x^2+29 x+14$
- $y^2=4 x^6+7 x^5+10 x^4+18 x^2+19 x+36$
- $y^2=24 x^6+21 x^5+25 x^4+44 x^3+6 x^2+18 x+9$
- $y^2=12 x^6+8 x^5+x^4+43 x^3+25 x^2+5 x+10$
- $y^2=17 x^6+27 x^5+2 x^4+29 x^3+21 x^2+18 x+28$
- $y^2=4 x^6+20 x^5+26 x^4+16 x^3+42 x^2+12 x+25$
- $y^2=24 x^6+43 x^5+5 x^4+41 x^3+34 x^2+38 x+42$
- $y^2=18 x^6+18 x^5+20 x^4+9 x^3+9 x^2+21 x+23$
- $y^2=46 x^6+37 x^5+45 x^4+38 x^3+18 x^2+43 x+25$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is 4.0.424400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.ao_fi | $2$ | (not in LMFDB) |