L(s) = 1 | − 3-s − 4-s + 4·5-s + 9-s + 12-s − 4·15-s + 16-s − 4·20-s − 3·23-s + 3·25-s − 27-s + 7·31-s − 36-s + 7·37-s + 4·45-s + 47-s − 48-s − 5·49-s − 2·53-s + 4·59-s + 4·60-s − 64-s − 12·67-s + 3·69-s − 10·71-s − 3·75-s + 4·80-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s + 1.78·5-s + 1/3·9-s + 0.288·12-s − 1.03·15-s + 1/4·16-s − 0.894·20-s − 0.625·23-s + 3/5·25-s − 0.192·27-s + 1.25·31-s − 1/6·36-s + 1.15·37-s + 0.596·45-s + 0.145·47-s − 0.144·48-s − 5/7·49-s − 0.274·53-s + 0.520·59-s + 0.516·60-s − 1/8·64-s − 1.46·67-s + 0.361·69-s − 1.18·71-s − 0.346·75-s + 0.447·80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.04504923107661563566253506647, −6.49141536259348474128394771099, −6.19270277946338311660710780227, −6.01451458732580579786497950016, −5.48345282151540046844034431414, −5.25130956195694648950120579494, −4.72589676521015940258052707661, −4.16605860607911809123663176721, −4.01823406321749541924750792853, −3.03304960674054616361116056002, −2.74697347041370747189223301906, −2.07117442686625292175632157778, −1.59027175168058351912024632179, −1.03668606720054659738211398892, 0,
1.03668606720054659738211398892, 1.59027175168058351912024632179, 2.07117442686625292175632157778, 2.74697347041370747189223301906, 3.03304960674054616361116056002, 4.01823406321749541924750792853, 4.16605860607911809123663176721, 4.72589676521015940258052707661, 5.25130956195694648950120579494, 5.48345282151540046844034431414, 6.01451458732580579786497950016, 6.19270277946338311660710780227, 6.49141536259348474128394771099, 7.04504923107661563566253506647