Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 51 x^{2} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.299700864398$, $\pm0.700299135602$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{115}, \sqrt{-217})\) |
Galois group: | $C_2^2$ |
Jacobians: | $84$ |
Isomorphism classes: | 192 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6941$ | $48177481$ | $326939452004$ | $2253353335311001$ | $15516041195083586861$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $6992$ | $571788$ | $47480676$ | $3939040644$ | $326938530638$ | $27136050989628$ | $2252292172121668$ | $186940255267540404$ | $15516041202961320272$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=51 x^6+57 x^5+20 x^4+42 x^3+59 x^2+43 x+58$
- $y^2=18 x^6+11 x^5+59 x^4+49 x^3+67 x^2+58 x+35$
- $y^2=21 x^6+81 x^5+23 x^3+80 x^2+68 x+11$
- $y^2=42 x^6+79 x^5+46 x^3+77 x^2+53 x+22$
- $y^2=66 x^6+7 x^5+12 x^4+58 x^3+27 x^2+9 x+27$
- $y^2=49 x^6+14 x^5+24 x^4+33 x^3+54 x^2+18 x+54$
- $y^2=71 x^6+34 x^5+21 x^4+74 x^3+19 x^2+64 x+22$
- $y^2=59 x^6+68 x^5+42 x^4+65 x^3+38 x^2+45 x+44$
- $y^2=44 x^6+17 x^5+28 x^4+59 x^3+3 x^2+58 x+76$
- $y^2=36 x^6+20 x^5+45 x^4+39 x^3+23 x^2+24 x+47$
- $y^2=72 x^6+40 x^5+7 x^4+78 x^3+46 x^2+48 x+11$
- $y^2=73 x^6+5 x^5+7 x^4+41 x^3+16 x^2+50 x+35$
- $y^2=63 x^6+10 x^5+14 x^4+82 x^3+32 x^2+17 x+70$
- $y^2=30 x^6+7 x^5+39 x^4+68 x^3+46 x^2+18 x+75$
- $y^2=60 x^6+14 x^5+78 x^4+53 x^3+9 x^2+36 x+67$
- $y^2=31 x^6+55 x^5+30 x^4+43 x^3+16 x^2+15 x+38$
- $y^2=62 x^6+27 x^5+60 x^4+3 x^3+32 x^2+30 x+76$
- $y^2=18 x^6+63 x^5+61 x^4+22 x^3+24 x^2+26 x+69$
- $y^2=36 x^6+43 x^5+39 x^4+44 x^3+48 x^2+52 x+55$
- $y^2=17 x^6+25 x^5+39 x^4+5 x^3+9 x^2+36 x+37$
- and 64 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{115}, \sqrt{-217})\). |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.bz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-24955}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.a_abz | $4$ | (not in LMFDB) |