L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 5·16-s + 8·17-s + 2·25-s + 20·29-s − 6·32-s − 16·34-s + 12·37-s − 4·49-s − 4·50-s − 40·58-s + 7·64-s + 16·67-s + 24·68-s − 24·74-s − 16·83-s + 8·98-s + 6·100-s − 20·101-s + 28·103-s + 60·116-s + 127-s − 8·128-s + 131-s − 32·134-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 5/4·16-s + 1.94·17-s + 2/5·25-s + 3.71·29-s − 1.06·32-s − 2.74·34-s + 1.97·37-s − 4/7·49-s − 0.565·50-s − 5.25·58-s + 7/8·64-s + 1.95·67-s + 2.91·68-s − 2.78·74-s − 1.75·83-s + 0.808·98-s + 3/5·100-s − 1.99·101-s + 2.75·103-s + 5.57·116-s + 0.0887·127-s − 0.707·128-s + 0.0873·131-s − 2.76·134-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.687179809\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.687179809\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.464720148285383274395083211133, −8.600506626386974754733153599815, −8.591719854503404647973526606440, −8.060706767888440493666686375696, −7.994022171981303662318707903022, −7.42427370593395791912102636538, −7.03432867991204954792087472939, −6.61932953362489900343342617688, −6.28591626832989856474494922376, −5.86058063485458486945352480239, −5.45735686938429888370837138293, −4.79266877933545202269196340713, −4.56586817801460336750958268308, −3.81068719113730444364575991074, −3.25212140046988975363211780834, −2.76071446101906306769807303111, −2.56905041531577077988028504277, −1.64879463858937532460343046813, −0.981928877622687933044407594463, −0.76326666849079354093271603211,
0.76326666849079354093271603211, 0.981928877622687933044407594463, 1.64879463858937532460343046813, 2.56905041531577077988028504277, 2.76071446101906306769807303111, 3.25212140046988975363211780834, 3.81068719113730444364575991074, 4.56586817801460336750958268308, 4.79266877933545202269196340713, 5.45735686938429888370837138293, 5.86058063485458486945352480239, 6.28591626832989856474494922376, 6.61932953362489900343342617688, 7.03432867991204954792087472939, 7.42427370593395791912102636538, 7.994022171981303662318707903022, 8.060706767888440493666686375696, 8.591719854503404647973526606440, 8.600506626386974754733153599815, 9.464720148285383274395083211133