| L(s) = 1 | − 3·3-s − 5·7-s + 6·9-s + 15·19-s + 15·21-s − 9·27-s − 18·31-s − 37-s − 16·43-s + 18·49-s − 45·57-s − 27·61-s − 30·63-s − 5·67-s − 27·73-s + 13·79-s + 9·81-s + 54·93-s + 33·103-s − 19·109-s + 3·111-s − 11·121-s + 127-s + 48·129-s + 131-s − 75·133-s + 137-s + ⋯ |
| L(s) = 1 | − 1.73·3-s − 1.88·7-s + 2·9-s + 3.44·19-s + 3.27·21-s − 1.73·27-s − 3.23·31-s − 0.164·37-s − 2.43·43-s + 18/7·49-s − 5.96·57-s − 3.45·61-s − 3.77·63-s − 0.610·67-s − 3.16·73-s + 1.46·79-s + 81-s + 5.59·93-s + 3.25·103-s − 1.81·109-s + 0.284·111-s − 121-s + 0.0887·127-s + 4.22·129-s + 0.0873·131-s − 6.50·133-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.959704987285887115583988433077, −8.944956716323593009340274014609, −7.75400839674116571239440330368, −7.59461213478708352559444032867, −7.15658939135890779930424894286, −7.08639148000656219215883809839, −6.38514587730014263435562691436, −6.16602466543640960225163255051, −5.62166634103015665937034679603, −5.56823798072336777183131269627, −4.86543766237316789326467093408, −4.83750551489742146452263981832, −3.78209517044340352980310984714, −3.52016939938474651814435791079, −3.25326601439805398984161234248, −2.62510793573990897062745453538, −1.47787717587236405967491373318, −1.28199931483748968222523711133, 0, 0,
1.28199931483748968222523711133, 1.47787717587236405967491373318, 2.62510793573990897062745453538, 3.25326601439805398984161234248, 3.52016939938474651814435791079, 3.78209517044340352980310984714, 4.83750551489742146452263981832, 4.86543766237316789326467093408, 5.56823798072336777183131269627, 5.62166634103015665937034679603, 6.16602466543640960225163255051, 6.38514587730014263435562691436, 7.08639148000656219215883809839, 7.15658939135890779930424894286, 7.59461213478708352559444032867, 7.75400839674116571239440330368, 8.944956716323593009340274014609, 8.959704987285887115583988433077