L(s) = 1 | + 10·13-s + 10·17-s − 10·37-s + 16·41-s − 10·53-s − 24·61-s − 10·73-s − 9·81-s − 10·97-s + 4·101-s − 30·113-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 50·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2.77·13-s + 2.42·17-s − 1.64·37-s + 2.49·41-s − 1.37·53-s − 3.07·61-s − 1.17·73-s − 81-s − 1.01·97-s + 0.398·101-s − 2.82·113-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.056160146\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.056160146\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | | \( 1 \) |
good | 3 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 23 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.34389581752958628359760485054, −11.04472555806920005307368319708, −10.54545353312228005749820967794, −10.38665363389198613782678020822, −9.493423312652212097735151495875, −9.368931877555665881972871881716, −8.629770810801943550226109079514, −8.394194096742075503759627841014, −7.64187653849720920038089449727, −7.61950321962881613564710904487, −6.68928335851737744391590006756, −6.17528400162867302190580578900, −5.71084731742201172430389379938, −5.52846652566638912601909530456, −4.50293949880647670934962873573, −4.00464382900555206770790773095, −3.19380337442781207459228011090, −3.15925999426796568586280927185, −1.61431408663841428470958862339, −1.13266468726042336887303247194,
1.13266468726042336887303247194, 1.61431408663841428470958862339, 3.15925999426796568586280927185, 3.19380337442781207459228011090, 4.00464382900555206770790773095, 4.50293949880647670934962873573, 5.52846652566638912601909530456, 5.71084731742201172430389379938, 6.17528400162867302190580578900, 6.68928335851737744391590006756, 7.61950321962881613564710904487, 7.64187653849720920038089449727, 8.394194096742075503759627841014, 8.629770810801943550226109079514, 9.368931877555665881972871881716, 9.493423312652212097735151495875, 10.38665363389198613782678020822, 10.54545353312228005749820967794, 11.04472555806920005307368319708, 11.34389581752958628359760485054