| L(s) = 1 | − 2·2-s − 4·3-s + 3·4-s + 8·6-s + 3·7-s − 4·8-s + 6·9-s − 11-s − 12·12-s − 2·13-s − 6·14-s + 5·16-s + 5·17-s − 12·18-s − 4·19-s − 12·21-s + 2·22-s − 2·23-s + 16·24-s + 4·26-s + 4·27-s + 9·28-s − 29-s − 11·31-s − 6·32-s + 4·33-s − 10·34-s + ⋯ |
| L(s) = 1 | − 1.41·2-s − 2.30·3-s + 3/2·4-s + 3.26·6-s + 1.13·7-s − 1.41·8-s + 2·9-s − 0.301·11-s − 3.46·12-s − 0.554·13-s − 1.60·14-s + 5/4·16-s + 1.21·17-s − 2.82·18-s − 0.917·19-s − 2.61·21-s + 0.426·22-s − 0.417·23-s + 3.26·24-s + 0.784·26-s + 0.769·27-s + 1.70·28-s − 0.185·29-s − 1.97·31-s − 1.06·32-s + 0.696·33-s − 1.71·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.940320223711762962223230912755, −8.737052205505259617471811452516, −8.156267292721367562811560124814, −7.985374050494055711862611586640, −7.28981585347324473914742674662, −7.28049098393576106993935962498, −6.66030687927452652207090414995, −6.19036550881638327218872196326, −5.97709781165528597738580603587, −5.31705363608102308496089227500, −5.19638799615103081115813939715, −5.02561438281820363204533597119, −4.04333333034968813031469823554, −3.76187398807366899802760505357, −2.69766668476017202650903454300, −2.37466375300647471221377237867, −1.42281832082459148997276125158, −1.21018847376649232357277933766, 0, 0,
1.21018847376649232357277933766, 1.42281832082459148997276125158, 2.37466375300647471221377237867, 2.69766668476017202650903454300, 3.76187398807366899802760505357, 4.04333333034968813031469823554, 5.02561438281820363204533597119, 5.19638799615103081115813939715, 5.31705363608102308496089227500, 5.97709781165528597738580603587, 6.19036550881638327218872196326, 6.66030687927452652207090414995, 7.28049098393576106993935962498, 7.28981585347324473914742674662, 7.985374050494055711862611586640, 8.156267292721367562811560124814, 8.737052205505259617471811452516, 8.940320223711762962223230912755