Properties

Label 2.29.b_aq
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $1 + x - 16 x^{2} + 29 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.228301058321$, $\pm0.821281154739$
Angle rank:  $2$ (numerical)
Number field:  4.0.448668.1
Galois group:  $D_{4}$
Jacobians:  $24$
Isomorphism classes:  24

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $856$ $681376$ $598183072$ $502138680448$ $420699430626616$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $31$ $809$ $24526$ $709953$ $20510771$ $594890246$ $17249611487$ $500245513249$ $14507141016358$ $420707175261089$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The endomorphism algebra of this simple isogeny class is 4.0.448668.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.ab_aq$2$(not in LMFDB)