L(s) = 1 | + 2-s − 2·3-s + 4-s − 2·6-s − 2·7-s + 8-s + 3·9-s − 4·11-s − 2·12-s + 8·13-s − 2·14-s + 16-s + 4·17-s + 3·18-s + 4·21-s − 4·22-s + 8·23-s − 2·24-s − 6·25-s + 8·26-s − 4·27-s − 2·28-s + 4·29-s + 32-s + 8·33-s + 4·34-s + 3·36-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.755·7-s + 0.353·8-s + 9-s − 1.20·11-s − 0.577·12-s + 2.21·13-s − 0.534·14-s + 1/4·16-s + 0.970·17-s + 0.707·18-s + 0.872·21-s − 0.852·22-s + 1.66·23-s − 0.408·24-s − 6/5·25-s + 1.56·26-s − 0.769·27-s − 0.377·28-s + 0.742·29-s + 0.176·32-s + 1.39·33-s + 0.685·34-s + 1/2·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.279824216\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.279824216\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.4648968402, −15.2472562838, −14.2531155803, −13.7262953554, −13.4821859369, −12.9353530446, −12.6521323881, −12.1318844803, −11.3731892768, −11.3351214109, −10.5195197796, −10.3639838911, −9.80165984984, −8.96665534829, −8.35691896663, −7.81839476073, −6.84552480603, −6.77602051524, −5.94586279153, −5.33985014788, −5.29886217645, −4.00502420742, −3.62482887082, −2.67859582553, −1.15780346499,
1.15780346499, 2.67859582553, 3.62482887082, 4.00502420742, 5.29886217645, 5.33985014788, 5.94586279153, 6.77602051524, 6.84552480603, 7.81839476073, 8.35691896663, 8.96665534829, 9.80165984984, 10.3639838911, 10.5195197796, 11.3351214109, 11.3731892768, 12.1318844803, 12.6521323881, 12.9353530446, 13.4821859369, 13.7262953554, 14.2531155803, 15.2472562838, 15.4648968402