Properties

Label 4-168e2-1.1-c1e2-0-3
Degree $4$
Conductor $28224$
Sign $1$
Analytic cond. $1.79958$
Root an. cond. $1.15822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s − 2·7-s + 8-s + 3·9-s − 4·11-s − 2·12-s + 8·13-s − 2·14-s + 16-s + 4·17-s + 3·18-s + 4·21-s − 4·22-s + 8·23-s − 2·24-s − 6·25-s + 8·26-s − 4·27-s − 2·28-s + 4·29-s + 32-s + 8·33-s + 4·34-s + 3·36-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.755·7-s + 0.353·8-s + 9-s − 1.20·11-s − 0.577·12-s + 2.21·13-s − 0.534·14-s + 1/4·16-s + 0.970·17-s + 0.707·18-s + 0.872·21-s − 0.852·22-s + 1.66·23-s − 0.408·24-s − 6/5·25-s + 1.56·26-s − 0.769·27-s − 0.377·28-s + 0.742·29-s + 0.176·32-s + 1.39·33-s + 0.685·34-s + 1/2·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28224\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.79958\)
Root analytic conductor: \(1.15822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28224,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.279824216\)
\(L(\frac12)\) \(\approx\) \(1.279824216\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( ( 1 + T )^{2} \)
7$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.e_w
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.13.ai_bm
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.17.ae_bm
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.a_w
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.23.ai_bu
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.29.ae_bu
31$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.31.a_ck
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.37.e_o
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.41.m_eo
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.ae_cc
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.47.ai_dq
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.53.am_fm
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.59.i_cs
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) 2.61.aq_ha
67$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) 2.67.au_hq
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.a_da
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.73.ae_di
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.79.ai_gc
83$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.83.q_ig
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.89.u_kc
97$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.97.u_ks
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.4648968402, −15.2472562838, −14.2531155803, −13.7262953554, −13.4821859369, −12.9353530446, −12.6521323881, −12.1318844803, −11.3731892768, −11.3351214109, −10.5195197796, −10.3639838911, −9.80165984984, −8.96665534829, −8.35691896663, −7.81839476073, −6.84552480603, −6.77602051524, −5.94586279153, −5.33985014788, −5.29886217645, −4.00502420742, −3.62482887082, −2.67859582553, −1.15780346499, 1.15780346499, 2.67859582553, 3.62482887082, 4.00502420742, 5.29886217645, 5.33985014788, 5.94586279153, 6.77602051524, 6.84552480603, 7.81839476073, 8.35691896663, 8.96665534829, 9.80165984984, 10.3639838911, 10.5195197796, 11.3351214109, 11.3731892768, 12.1318844803, 12.6521323881, 12.9353530446, 13.4821859369, 13.7262953554, 14.2531155803, 15.2472562838, 15.4648968402

Graph of the $Z$-function along the critical line