Properties

Label 4-168e2-1.1-c1e2-0-21
Degree $4$
Conductor $28224$
Sign $-1$
Analytic cond. $1.79958$
Root an. cond. $1.15822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·7-s − 9-s + 2·13-s − 4·19-s − 6·23-s − 3·25-s + 4·29-s − 5·31-s + 6·35-s − 8·37-s + 6·41-s − 8·43-s + 2·45-s − 4·47-s + 2·49-s + 2·53-s + 6·59-s − 12·61-s + 3·63-s − 4·65-s − 2·71-s + 7·79-s + 81-s + 14·83-s − 10·89-s − 6·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.13·7-s − 1/3·9-s + 0.554·13-s − 0.917·19-s − 1.25·23-s − 3/5·25-s + 0.742·29-s − 0.898·31-s + 1.01·35-s − 1.31·37-s + 0.937·41-s − 1.21·43-s + 0.298·45-s − 0.583·47-s + 2/7·49-s + 0.274·53-s + 0.781·59-s − 1.53·61-s + 0.377·63-s − 0.496·65-s − 0.237·71-s + 0.787·79-s + 1/9·81-s + 1.53·83-s − 1.05·89-s − 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28224\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1.79958\)
Root analytic conductor: \(1.15822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 28224,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 + 3 T + p T^{2} \)
good5$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.5.c_h
11$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \) 2.11.a_d
13$D_{4}$ \( 1 - 2 T + p T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.13.ac_n
17$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \) 2.17.a_ak
19$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.19.e_bh
23$D_{4}$ \( 1 + 6 T + 14 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.23.g_o
29$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.29.ae_n
31$D_{4}$ \( 1 + 5 T - 2 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.31.f_ac
37$D_{4}$ \( 1 + 8 T + 31 T^{2} + 8 p T^{3} + p^{2} T^{4} \) 2.37.i_bf
41$D_{4}$ \( 1 - 6 T + 70 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.41.ag_cs
43$D_{4}$ \( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} \) 2.43.i_bv
47$D_{4}$ \( 1 + 4 T + 42 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.47.e_bq
53$D_{4}$ \( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.53.ac_ah
59$D_{4}$ \( 1 - 6 T + 53 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.59.ag_cb
61$D_{4}$ \( 1 + 12 T + 134 T^{2} + 12 p T^{3} + p^{2} T^{4} \) 2.61.m_fe
67$C_2^2$ \( 1 + 95 T^{2} + p^{2} T^{4} \) 2.67.a_dr
71$D_{4}$ \( 1 + 2 T + 102 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.71.c_dy
73$C_2^2$ \( 1 + 125 T^{2} + p^{2} T^{4} \) 2.73.a_ev
79$D_{4}$ \( 1 - 7 T + 78 T^{2} - 7 p T^{3} + p^{2} T^{4} \) 2.79.ah_da
83$D_{4}$ \( 1 - 14 T + 189 T^{2} - 14 p T^{3} + p^{2} T^{4} \) 2.83.ao_hh
89$D_{4}$ \( 1 + 10 T + 78 T^{2} + 10 p T^{3} + p^{2} T^{4} \) 2.89.k_da
97$D_{4}$ \( 1 - 8 T - 11 T^{2} - 8 p T^{3} + p^{2} T^{4} \) 2.97.ai_al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.7554950766, −15.0776450852, −14.8489167796, −14.1718495759, −13.5279172207, −13.4543128353, −12.6258169261, −12.2946067743, −11.9316522385, −11.3275545060, −10.8162447172, −10.3458009591, −9.77119123496, −9.30476018402, −8.53119511478, −8.31816709366, −7.62086327191, −7.02933562642, −6.32098537108, −6.05093239547, −5.18229918303, −4.28139829632, −3.70723788281, −3.18066973466, −2.02039137781, 0, 2.02039137781, 3.18066973466, 3.70723788281, 4.28139829632, 5.18229918303, 6.05093239547, 6.32098537108, 7.02933562642, 7.62086327191, 8.31816709366, 8.53119511478, 9.30476018402, 9.77119123496, 10.3458009591, 10.8162447172, 11.3275545060, 11.9316522385, 12.2946067743, 12.6258169261, 13.4543128353, 13.5279172207, 14.1718495759, 14.8489167796, 15.0776450852, 15.7554950766

Graph of the $Z$-function along the critical line