L(s) = 1 | − 2·5-s − 3·7-s − 9-s + 2·13-s − 4·19-s − 6·23-s − 3·25-s + 4·29-s − 5·31-s + 6·35-s − 8·37-s + 6·41-s − 8·43-s + 2·45-s − 4·47-s + 2·49-s + 2·53-s + 6·59-s − 12·61-s + 3·63-s − 4·65-s − 2·71-s + 7·79-s + 81-s + 14·83-s − 10·89-s − 6·91-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.13·7-s − 1/3·9-s + 0.554·13-s − 0.917·19-s − 1.25·23-s − 3/5·25-s + 0.742·29-s − 0.898·31-s + 1.01·35-s − 1.31·37-s + 0.937·41-s − 1.21·43-s + 0.298·45-s − 0.583·47-s + 2/7·49-s + 0.274·53-s + 0.781·59-s − 1.53·61-s + 0.377·63-s − 0.496·65-s − 0.237·71-s + 0.787·79-s + 1/9·81-s + 1.53·83-s − 1.05·89-s − 0.628·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.7554950766, −15.0776450852, −14.8489167796, −14.1718495759, −13.5279172207, −13.4543128353, −12.6258169261, −12.2946067743, −11.9316522385, −11.3275545060, −10.8162447172, −10.3458009591, −9.77119123496, −9.30476018402, −8.53119511478, −8.31816709366, −7.62086327191, −7.02933562642, −6.32098537108, −6.05093239547, −5.18229918303, −4.28139829632, −3.70723788281, −3.18066973466, −2.02039137781, 0,
2.02039137781, 3.18066973466, 3.70723788281, 4.28139829632, 5.18229918303, 6.05093239547, 6.32098537108, 7.02933562642, 7.62086327191, 8.31816709366, 8.53119511478, 9.30476018402, 9.77119123496, 10.3458009591, 10.8162447172, 11.3275545060, 11.9316522385, 12.2946067743, 12.6258169261, 13.4543128353, 13.5279172207, 14.1718495759, 14.8489167796, 15.0776450852, 15.7554950766