Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 47 x^{2} + 344 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.416118303684$, $\pm0.836189524091$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.323360400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $52$ |
Isomorphism classes: | 104 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2249$ | $3474705$ | $6354603476$ | $11687882582025$ | $21605027652262769$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $1880$ | $79924$ | $3418708$ | $146964532$ | $6321520190$ | $271818681004$ | $11688207612388$ | $502592577110572$ | $21611481932563400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=24 x^6+38 x^4+9 x^2+5 x+27$
- $y^2=8 x^6+39 x^5+34 x^4+8 x^3+11 x^2+37 x+10$
- $y^2=14 x^6+2 x^5+2 x^4+14 x^3+15 x^2+16 x+15$
- $y^2=19 x^6+12 x^5+8 x^4+38 x^3+25 x^2+x+24$
- $y^2=35 x^6+9 x^5+38 x^4+40 x^3+35 x^2+22 x+40$
- $y^2=25 x^6+24 x^5+38 x^4+37 x^3+3 x^2+31 x+16$
- $y^2=21 x^6+16 x^5+32 x^4+8 x^3+21 x^2+31 x+19$
- $y^2=37 x^6+7 x^5+3 x^4+38 x^3+23 x^2+29 x+17$
- $y^2=42 x^6+13 x^5+23 x^4+16 x^3+35 x^2+15 x+11$
- $y^2=31 x^6+36 x^5+2 x^4+16 x^3+x^2+31 x+2$
- $y^2=23 x^6+5 x^5+39 x^4+29 x^3+6 x^2+13 x+3$
- $y^2=33 x^6+6 x^5+24 x^4+11 x^3+3 x^2+42 x+11$
- $y^2=36 x^6+29 x^5+x^4+40 x^3+23 x^2+29 x+9$
- $y^2=15 x^6+12 x^5+2 x^4+37 x^3+7 x^2+31 x+38$
- $y^2=31 x^6+22 x^5+3 x^4+4 x^3+7 x^2+15 x+10$
- $y^2=34 x^6+39 x^5+27 x^4+37 x^3+39 x^2+15$
- $y^2=9 x^6+22 x^5+26 x^4+23 x^3+5 x^2+13 x+4$
- $y^2=3 x^6+33 x^5+30 x^4+x^3+15 x^2+6 x+13$
- $y^2=36 x^6+2 x^5+27 x^4+7 x^3+8 x^2+3 x+12$
- $y^2=24 x^6+6 x^5+28 x^4+39 x^3+12 x^2+24 x+31$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.323360400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.ai_bv | $2$ | (not in LMFDB) |