Properties

Label 2.61.m_fe
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $1 + 12 x + 134 x^{2} + 732 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.522454888031$, $\pm0.745808984045$
Angle rank:  $2$ (numerical)
Number field:  4.0.175104.2
Galois group:  $D_{4}$
Jacobians:  $98$
Isomorphism classes:  266

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4600$ $14315200$ $51316684600$ $191711219788800$ $713327517281515000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $74$ $3846$ $226082$ $13846126$ $844578074$ $51520752438$ $3142743882674$ $191707262061406$ $11694146354888042$ $713342913170673126$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 98 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The endomorphism algebra of this simple isogeny class is 4.0.175104.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.am_fe$2$(not in LMFDB)