L(s) = 1 | + 2·3-s − 5-s + 3·9-s − 2·15-s + 7·19-s + 15·23-s + 10·27-s + 6·29-s + 8·31-s − 15·41-s − 3·45-s + 6·47-s + 11·49-s + 9·53-s + 14·57-s − 12·59-s − 10·61-s − 4·67-s + 30·69-s − 6·71-s + 2·73-s + 4·79-s + 20·81-s + 12·87-s − 27·89-s + 16·93-s − 7·95-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.447·5-s + 9-s − 0.516·15-s + 1.60·19-s + 3.12·23-s + 1.92·27-s + 1.11·29-s + 1.43·31-s − 2.34·41-s − 0.447·45-s + 0.875·47-s + 11/7·49-s + 1.23·53-s + 1.85·57-s − 1.56·59-s − 1.28·61-s − 0.488·67-s + 3.61·69-s − 0.712·71-s + 0.234·73-s + 0.450·79-s + 20/9·81-s + 1.28·87-s − 2.86·89-s + 1.65·93-s − 0.718·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.473133043\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.473133043\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.447626019423920204106581577311, −9.269219945017920319721471282599, −8.731150363683768213043298923453, −8.416679428359766017071750142211, −8.413349294140568456685132473102, −7.49977610956217201122354973484, −7.30043268635282368455226344325, −7.10497220494914941409037051427, −6.59176000995694541688894858067, −6.11002843020216393465684932479, −5.33531315168600516087188028764, −5.06345955298462700376778508711, −4.52138550344180470020338037542, −4.31337341116496284426662432702, −3.33857768886775966916876679723, −3.02974719571488939392396967675, −3.02411444417152151679190006529, −2.21040810276674802692160082177, −1.14461240640648834349234863454, −0.999980426891274252779301264080,
0.999980426891274252779301264080, 1.14461240640648834349234863454, 2.21040810276674802692160082177, 3.02411444417152151679190006529, 3.02974719571488939392396967675, 3.33857768886775966916876679723, 4.31337341116496284426662432702, 4.52138550344180470020338037542, 5.06345955298462700376778508711, 5.33531315168600516087188028764, 6.11002843020216393465684932479, 6.59176000995694541688894858067, 7.10497220494914941409037051427, 7.30043268635282368455226344325, 7.49977610956217201122354973484, 8.413349294140568456685132473102, 8.416679428359766017071750142211, 8.731150363683768213043298923453, 9.269219945017920319721471282599, 9.447626019423920204106581577311