L(s) = 1 | − 2·7-s − 4·11-s − 2·19-s − 8·23-s − 3·25-s − 12·29-s − 6·31-s + 6·37-s − 12·41-s − 4·43-s − 12·47-s + 3·49-s − 4·59-s + 8·61-s + 8·67-s + 12·73-s + 8·77-s − 12·79-s − 20·83-s + 12·89-s + 16·97-s − 8·101-s + 2·103-s − 16·107-s − 2·109-s − 8·113-s − 3·121-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 1.20·11-s − 0.458·19-s − 1.66·23-s − 3/5·25-s − 2.22·29-s − 1.07·31-s + 0.986·37-s − 1.87·41-s − 0.609·43-s − 1.75·47-s + 3/7·49-s − 0.520·59-s + 1.02·61-s + 0.977·67-s + 1.40·73-s + 0.911·77-s − 1.35·79-s − 2.19·83-s + 1.27·89-s + 1.62·97-s − 0.796·101-s + 0.197·103-s − 1.54·107-s − 0.191·109-s − 0.752·113-s − 0.272·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.542654652216230959521704349193, −8.843937288087059936676586379472, −8.346933451372506979963474538918, −8.163135103551902999998789279613, −7.53166886724824844002599940182, −7.51836469526385514164086456315, −6.65838950182135738678503470550, −6.58458565192231041921810364338, −5.90998775372738851706530556547, −5.58247863228340094066682251878, −5.23171088538103340208234197605, −4.73215326334465849502908556099, −3.94257712045845845227713106711, −3.76830950206860204984510345036, −3.27204007459803713190804078611, −2.56955837779224846930202337162, −2.05297410657727230163455175933, −1.59467472235857577988802052659, 0, 0,
1.59467472235857577988802052659, 2.05297410657727230163455175933, 2.56955837779224846930202337162, 3.27204007459803713190804078611, 3.76830950206860204984510345036, 3.94257712045845845227713106711, 4.73215326334465849502908556099, 5.23171088538103340208234197605, 5.58247863228340094066682251878, 5.90998775372738851706530556547, 6.58458565192231041921810364338, 6.65838950182135738678503470550, 7.51836469526385514164086456315, 7.53166886724824844002599940182, 8.163135103551902999998789279613, 8.346933451372506979963474538918, 8.843937288087059936676586379472, 9.542654652216230959521704349193