Properties

Label 2.89.am_fv
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 - 12 x + 151 x^{2} - 1068 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.235452798440$, $\pm0.532739926641$
Angle rank:  $2$ (numerical)
Number field:  4.0.44669968.1
Galois group:  $D_{4}$
Jacobians:  $354$
Cyclic group of points:    no
Non-cyclic primes:   $3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6993$ $64006929$ $497337488676$ $3936655086285033$ $31182838928966538513$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $78$ $8080$ $705474$ $62743300$ $5584259838$ $496982822614$ $44231320154526$ $3936588603164548$ $350356403551457394$ $31181719930801409680$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 354 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is 4.0.44669968.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.m_fv$2$(not in LMFDB)