Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 12 x + 151 x^{2} - 1068 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.235452798440$, $\pm0.532739926641$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.44669968.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $354$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6993$ | $64006929$ | $497337488676$ | $3936655086285033$ | $31182838928966538513$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $8080$ | $705474$ | $62743300$ | $5584259838$ | $496982822614$ | $44231320154526$ | $3936588603164548$ | $350356403551457394$ | $31181719930801409680$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 354 curves (of which all are hyperelliptic):
- $y^2=37 x^6+12 x^5+22 x^4+50 x^3+58 x^2+3 x+3$
- $y^2=84 x^6+25 x^5+81 x^4+73 x^3+57 x^2+4 x+70$
- $y^2=58 x^6+66 x^5+10 x^4+16 x^3+14 x^2+23 x+75$
- $y^2=88 x^6+52 x^5+2 x^4+78 x^3+13 x^2+77 x+82$
- $y^2=15 x^6+71 x^5+33 x^4+54 x^3+7 x^2+49 x+10$
- $y^2=3 x^6+37 x^5+48 x^4+6 x^3+36 x^2+60 x+63$
- $y^2=74 x^6+82 x^5+20 x^4+20 x^3+84 x^2+45 x+65$
- $y^2=45 x^6+82 x^5+79 x^4+61 x^3+18 x^2+60 x+51$
- $y^2=15 x^6+35 x^5+26 x^4+66 x^3+8 x^2+55 x+28$
- $y^2=34 x^6+56 x^5+16 x^4+76 x^3+42 x^2+6 x+35$
- $y^2=27 x^6+32 x^5+18 x^4+29 x^3+41 x^2+11 x+51$
- $y^2=36 x^6+34 x^5+82 x^4+24 x^3+73 x^2+25 x+59$
- $y^2=8 x^6+62 x^5+56 x^4+83 x^3+73 x^2+79 x+83$
- $y^2=61 x^6+83 x^5+50 x^4+24 x^3+73 x^2+19 x+20$
- $y^2=70 x^6+83 x^5+86 x^4+6 x^3+14 x^2+88 x+38$
- $y^2=77 x^6+64 x^5+62 x^4+17 x^3+82 x^2+58 x+41$
- $y^2=70 x^6+68 x^5+22 x^4+30 x^3+85 x^2+29 x+10$
- $y^2=35 x^6+54 x^5+17 x^4+76 x^3+54 x^2+14 x+68$
- $y^2=79 x^6+58 x^5+5 x^4+2 x^3+39 x+1$
- $y^2=6 x^6+32 x^5+82 x^4+37 x^3+29 x^2+29 x+28$
- and 334 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is 4.0.44669968.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.m_fv | $2$ | (not in LMFDB) |