Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 94 x^{2} + 236 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.431266483685$, $\pm0.657420434710$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.8068928.2 |
Galois group: | $D_{4}$ |
Jacobians: | $196$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3816$ | $12730176$ | $42107335272$ | $146809074336768$ | $511106747086357416$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $64$ | $3654$ | $205024$ | $12115598$ | $714910304$ | $42180240726$ | $2488655627648$ | $146830458010654$ | $8662995465452032$ | $511116752837191014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 196 curves (of which all are hyperelliptic):
- $y^2=42 x^6+57 x^5+29 x^4+35 x^3+27 x^2+50 x+43$
- $y^2=10 x^6+56 x^5+24 x^4+36 x^3+33 x^2+53 x+15$
- $y^2=52 x^6+21 x^5+34 x^4+6 x^3+39 x^2+49 x+22$
- $y^2=40 x^6+30 x^5+8 x^4+6 x^3+25 x^2+41 x+11$
- $y^2=55 x^6+38 x^5+38 x^4+28 x^3+32 x^2+43 x+3$
- $y^2=27 x^6+10 x^5+14 x^4+36 x^3+18 x^2+22 x+12$
- $y^2=48 x^6+22 x^5+45 x^4+53 x^3+8 x^2+17 x+30$
- $y^2=39 x^6+35 x^5+39 x^4+6 x^3+29 x^2+25 x+7$
- $y^2=13 x^6+21 x^5+4 x^4+17 x^3+44 x^2+5 x+7$
- $y^2=52 x^6+15 x^4+13 x^3+45 x^2+4 x+35$
- $y^2=26 x^6+34 x^5+50 x^4+37 x^3+27 x^2+53 x+26$
- $y^2=27 x^6+46 x^5+41 x^4+8 x^3+25 x^2+5 x+39$
- $y^2=12 x^6+19 x^5+47 x^4+51 x^3+51 x^2+43 x+7$
- $y^2=37 x^6+11 x^5+44 x^4+53 x^3+5 x^2+17 x+6$
- $y^2=53 x^6+19 x^5+46 x^4+29 x^3+28 x^2+47 x+29$
- $y^2=5 x^6+36 x^5+22 x^4+17 x^3+34 x^2+38 x+39$
- $y^2=10 x^6+49 x^5+8 x^4+7 x^3+46 x^2+42 x+2$
- $y^2=49 x^6+52 x^5+8 x^4+7 x^2+34 x+40$
- $y^2=54 x^6+37 x^5+3 x^4+11 x^3+51 x^2+34 x+22$
- $y^2=14 x^6+32 x^5+56 x^4+18 x^3+8 x^2+14 x+6$
- and 176 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.8068928.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ae_dq | $2$ | (not in LMFDB) |