Properties

Label 4-148e2-1.1-c1e2-0-1
Degree $4$
Conductor $21904$
Sign $-1$
Analytic cond. $1.39661$
Root an. cond. $1.08709$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 2·4-s − 2·5-s + 4·6-s + 2·7-s + 9-s + 4·10-s − 2·11-s − 4·12-s − 2·13-s − 4·14-s + 4·15-s − 4·16-s + 2·17-s − 2·18-s + 2·19-s − 4·20-s − 4·21-s + 4·22-s + 8·23-s − 6·25-s + 4·26-s − 2·27-s + 4·28-s + 4·29-s − 8·30-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 4-s − 0.894·5-s + 1.63·6-s + 0.755·7-s + 1/3·9-s + 1.26·10-s − 0.603·11-s − 1.15·12-s − 0.554·13-s − 1.06·14-s + 1.03·15-s − 16-s + 0.485·17-s − 0.471·18-s + 0.458·19-s − 0.894·20-s − 0.872·21-s + 0.852·22-s + 1.66·23-s − 6/5·25-s + 0.784·26-s − 0.384·27-s + 0.755·28-s + 0.742·29-s − 1.46·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21904\)    =    \(2^{4} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(1.39661\)
Root analytic conductor: \(1.08709\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 21904,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + p T + p T^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + p T + p T^{2} ) \) 2.3.c_d
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.c_k
7$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.7.ac_l
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.11.c_h
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.c_ba
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \) 2.17.ac_bi
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \) 2.19.ac_bm
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.23.ai_cg
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.29.ae_bu
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.a_bu
41$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.41.c_t
43$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.c_da
47$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.47.k_dz
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - T + p T^{2} ) \) 2.53.ak_el
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.59.a_cc
61$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.61.m_fy
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.67.e_bm
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 5 T + p T^{2} ) \) 2.71.ao_hf
73$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 13 T + p T^{2} ) \) 2.73.o_gd
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) 2.79.ao_hq
83$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 15 T + p T^{2} ) \) 2.83.o_fv
89$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.89.ac_go
97$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.97.i_fq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.1920174169, −15.6038578732, −15.0898133484, −14.7795750605, −13.9857216787, −13.4242388779, −12.9583864139, −12.1179230334, −11.7573247228, −11.5526346186, −10.8240520925, −10.7751381625, −9.93309835361, −9.59657912559, −8.90499380067, −8.08033761001, −8.01433080787, −7.36102788146, −6.87039121695, −6.07828897597, −5.10085747285, −5.00317001401, −3.97768080475, −2.81288670918, −1.43453783212, 0, 1.43453783212, 2.81288670918, 3.97768080475, 5.00317001401, 5.10085747285, 6.07828897597, 6.87039121695, 7.36102788146, 8.01433080787, 8.08033761001, 8.90499380067, 9.59657912559, 9.93309835361, 10.7751381625, 10.8240520925, 11.5526346186, 11.7573247228, 12.1179230334, 12.9583864139, 13.4242388779, 13.9857216787, 14.7795750605, 15.0898133484, 15.6038578732, 16.1920174169

Graph of the $Z$-function along the critical line