L(s) = 1 | − 9-s − 4·11-s − 14·19-s + 4·29-s + 10·31-s + 24·41-s + 5·49-s − 12·59-s − 26·61-s + 8·71-s − 16·79-s + 81-s − 32·89-s + 4·99-s − 18·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 17·169-s + 14·171-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 1.20·11-s − 3.21·19-s + 0.742·29-s + 1.79·31-s + 3.74·41-s + 5/7·49-s − 1.56·59-s − 3.32·61-s + 0.949·71-s − 1.80·79-s + 1/9·81-s − 3.39·89-s + 0.402·99-s − 1.72·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.30·169-s + 1.07·171-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.032242198\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.032242198\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11644947816288021049818698252, −9.314537063924962042277544031807, −9.288766405770784443349619384584, −8.615875208796458033587449771537, −8.319619477119805774047537149854, −7.934135284358977194002669909799, −7.70168657859402142766385711202, −7.00109256722664370375633776604, −6.58686196217540139420012569517, −6.07881883372863602955411312406, −5.92096829976934129275414026984, −5.39388365771900559385414862261, −4.47224299455473156134775076265, −4.39262977784870508815624101530, −4.21816388347545143103778305578, −2.97777678868117345492245115772, −2.76349451288150143847834960080, −2.33834021004731874521058085078, −1.51692702799655189650057638228, −0.42800494081046953701531497256,
0.42800494081046953701531497256, 1.51692702799655189650057638228, 2.33834021004731874521058085078, 2.76349451288150143847834960080, 2.97777678868117345492245115772, 4.21816388347545143103778305578, 4.39262977784870508815624101530, 4.47224299455473156134775076265, 5.39388365771900559385414862261, 5.92096829976934129275414026984, 6.07881883372863602955411312406, 6.58686196217540139420012569517, 7.00109256722664370375633776604, 7.70168657859402142766385711202, 7.934135284358977194002669909799, 8.319619477119805774047537149854, 8.615875208796458033587449771537, 9.288766405770784443349619384584, 9.314537063924962042277544031807, 10.11644947816288021049818698252