L(s) = 1 | + 9-s − 10·29-s − 4·41-s − 10·49-s − 4·61-s + 30·73-s + 81-s + 10·97-s + 14·101-s − 20·113-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
L(s) = 1 | + 1/3·9-s − 1.85·29-s − 0.624·41-s − 1.42·49-s − 0.512·61-s + 3.51·73-s + 1/9·81-s + 1.01·97-s + 1.39·101-s − 1.88·113-s + 2/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.78808775913876392933453944191, −7.34130012115956754660730841468, −6.79392422706709871022858223183, −6.47014968768964921619465089530, −6.03960564462175403995142645586, −5.42134507473090919912970113015, −5.09965894321624823775818464804, −4.65053602780328874287633574450, −3.99020078596429202652449698467, −3.58555167784490939101626526313, −3.17455296312198934849494330624, −2.29734272480366233057797002406, −1.90158426083300866061178865345, −1.10993998515854918944095813467, 0,
1.10993998515854918944095813467, 1.90158426083300866061178865345, 2.29734272480366233057797002406, 3.17455296312198934849494330624, 3.58555167784490939101626526313, 3.99020078596429202652449698467, 4.65053602780328874287633574450, 5.09965894321624823775818464804, 5.42134507473090919912970113015, 6.03960564462175403995142645586, 6.47014968768964921619465089530, 6.79392422706709871022858223183, 7.34130012115956754660730841468, 7.78808775913876392933453944191