L(s) = 1 | + 3-s + 5-s + 2·7-s − 2·9-s − 5·11-s + 13-s + 15-s + 12·19-s + 2·21-s + 13·23-s − 6·25-s − 2·27-s + 17·29-s − 7·31-s − 5·33-s + 2·35-s − 2·37-s + 39-s − 3·41-s + 10·43-s − 2·45-s − 14·47-s + 2·49-s − 5·55-s + 12·57-s − 2·59-s + 23·61-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 0.755·7-s − 2/3·9-s − 1.50·11-s + 0.277·13-s + 0.258·15-s + 2.75·19-s + 0.436·21-s + 2.71·23-s − 6/5·25-s − 0.384·27-s + 3.15·29-s − 1.25·31-s − 0.870·33-s + 0.338·35-s − 0.328·37-s + 0.160·39-s − 0.468·41-s + 1.52·43-s − 0.298·45-s − 2.04·47-s + 2/7·49-s − 0.674·55-s + 1.58·57-s − 0.260·59-s + 2.94·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.366985453\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.366985453\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00416080521737867668547719186, −9.423573357901088040967922984435, −9.202591449590049307777214992322, −8.747654813880771261317206236437, −8.197551749731517472587885985878, −8.057561852321722246700430421064, −7.63426081872345604936301083114, −7.15973106300545898049087229000, −6.74102344402333627137106956186, −6.23015906320180027395520780820, −5.39965336207809609555544966994, −5.19785914764143636224463035061, −5.19272788969999737228410079259, −4.51811136958919140519267599375, −3.50297883050232801474336711920, −3.29981558819210314937142935625, −2.61111439831505776880749585905, −2.49515765356552428200768414999, −1.38697002448220497391236007967, −0.845839199601194662638915560879,
0.845839199601194662638915560879, 1.38697002448220497391236007967, 2.49515765356552428200768414999, 2.61111439831505776880749585905, 3.29981558819210314937142935625, 3.50297883050232801474336711920, 4.51811136958919140519267599375, 5.19272788969999737228410079259, 5.19785914764143636224463035061, 5.39965336207809609555544966994, 6.23015906320180027395520780820, 6.74102344402333627137106956186, 7.15973106300545898049087229000, 7.63426081872345604936301083114, 8.057561852321722246700430421064, 8.197551749731517472587885985878, 8.747654813880771261317206236437, 9.202591449590049307777214992322, 9.423573357901088040967922984435, 10.00416080521737867668547719186