Properties

Label 4-1110e2-1.1-c1e2-0-22
Degree $4$
Conductor $1232100$
Sign $-1$
Analytic cond. $78.5597$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 4·7-s + 9-s − 2·12-s + 4·13-s + 16-s + 4·19-s − 8·21-s + 25-s + 4·27-s + 4·28-s − 20·31-s + 36-s + 2·37-s − 8·39-s − 8·43-s − 2·48-s − 2·49-s + 4·52-s − 8·57-s − 20·61-s + 4·63-s + 64-s + 4·67-s + 4·73-s − 2·75-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 1.51·7-s + 1/3·9-s − 0.577·12-s + 1.10·13-s + 1/4·16-s + 0.917·19-s − 1.74·21-s + 1/5·25-s + 0.769·27-s + 0.755·28-s − 3.59·31-s + 1/6·36-s + 0.328·37-s − 1.28·39-s − 1.21·43-s − 0.288·48-s − 2/7·49-s + 0.554·52-s − 1.05·57-s − 2.56·61-s + 0.503·63-s + 1/8·64-s + 0.488·67-s + 0.468·73-s − 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1232100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(78.5597\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1232100,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
37$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59731631879469280117277624063, −7.37364372891229977185623115606, −7.01389829611117685755868614566, −6.24527726803627967890931657857, −6.09945696108452207540402656878, −5.49324095653367495167136231203, −5.25330564043371456613299060211, −4.80762486474812590647702092154, −4.31005201030842057232591337712, −3.49870387163770249696581998319, −3.29880100176274410685427430205, −2.29716886023620970672769162796, −1.44505436450462837187908934432, −1.42055400977912848245367112580, 0, 1.42055400977912848245367112580, 1.44505436450462837187908934432, 2.29716886023620970672769162796, 3.29880100176274410685427430205, 3.49870387163770249696581998319, 4.31005201030842057232591337712, 4.80762486474812590647702092154, 5.25330564043371456613299060211, 5.49324095653367495167136231203, 6.09945696108452207540402656878, 6.24527726803627967890931657857, 7.01389829611117685755868614566, 7.37364372891229977185623115606, 7.59731631879469280117277624063

Graph of the $Z$-function along the critical line