Related objects

Learn more

Show commands: PariGP / SageMath
H = DirichletGroup(1232100)
 
chi = H[1]
 
pari: [g,chi] = znchar(Mod(1,1232100))
 

Basic properties

Modulus: \(1232100\)
Conductor: \(1\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{1}(0,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)

Values on generators

\((616051,136901,689977,97201)\) → \((1,1,1,1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(41\)
\( \chi_{ 1232100 }(1, a) \) \(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1232100 }(1,a) \;\) at \(\;a = \) e.g. 2