Properties

Label 3330.d
Number of curves $4$
Conductor $3330$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3330.d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3330.d do not have complex multiplication.

Modular form 3330.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + 2 q^{7} - q^{8} + q^{10} + 2 q^{13} - 2 q^{14} + q^{16} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3330.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3330.d1 3330g3 \([1, -1, 0, -47475, 3993381]\) \(16232905099479601/4052240\) \(2954082960\) \([6]\) \(6912\) \(1.1928\)  
3330.d2 3330g4 \([1, -1, 0, -47295, 4025025]\) \(-16048965315233521/256572640900\) \(-187041455216100\) \([6]\) \(13824\) \(1.5394\)  
3330.d3 3330g1 \([1, -1, 0, -675, 3861]\) \(46694890801/18944000\) \(13810176000\) \([2]\) \(2304\) \(0.64351\) \(\Gamma_0(N)\)-optimal
3330.d4 3330g2 \([1, -1, 0, 2205, 26325]\) \(1625964918479/1369000000\) \(-998001000000\) \([2]\) \(4608\) \(0.99008\)