L(s) = 1 | − 4-s + 7·7-s + 2·13-s − 3·16-s + 19-s + 8·25-s − 7·28-s − 5·31-s + 7·37-s + 19·43-s + 25·49-s − 2·52-s − 14·61-s + 7·64-s − 11·67-s + 73-s − 76-s + 16·79-s + 14·91-s + 7·97-s − 8·100-s + 10·103-s − 23·109-s − 21·112-s + 8·121-s + 5·124-s + 127-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 2.64·7-s + 0.554·13-s − 3/4·16-s + 0.229·19-s + 8/5·25-s − 1.32·28-s − 0.898·31-s + 1.15·37-s + 2.89·43-s + 25/7·49-s − 0.277·52-s − 1.79·61-s + 7/8·64-s − 1.34·67-s + 0.117·73-s − 0.114·76-s + 1.80·79-s + 1.46·91-s + 0.710·97-s − 4/5·100-s + 0.985·103-s − 2.20·109-s − 1.98·112-s + 8/11·121-s + 0.449·124-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.949389133\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.949389133\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.985090580364555816909935555633, −7.73255113962640828983385568681, −7.40898675704143229224136719922, −6.85601126037312811988469633481, −6.22352332095808095109214182636, −5.73929666698500247245024182477, −5.27342880744663435503755340410, −4.83524029416026843947618665230, −4.41423671973534029360550971540, −4.27725552030845210541887284628, −3.47177779696055329568185559602, −2.65832453194498384528279836396, −2.14023818286116106329815823247, −1.42360122444256523249385438297, −0.887310121126536044251794560117,
0.887310121126536044251794560117, 1.42360122444256523249385438297, 2.14023818286116106329815823247, 2.65832453194498384528279836396, 3.47177779696055329568185559602, 4.27725552030845210541887284628, 4.41423671973534029360550971540, 4.83524029416026843947618665230, 5.27342880744663435503755340410, 5.73929666698500247245024182477, 6.22352332095808095109214182636, 6.85601126037312811988469633481, 7.40898675704143229224136719922, 7.73255113962640828983385568681, 7.985090580364555816909935555633