Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 88 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.383957366640$, $\pm0.616042633360$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{30}, \sqrt{-206})\) |
Galois group: | $C_2^2$ |
Jacobians: | $228$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3570$ | $12744900$ | $42180296130$ | $146811510896400$ | $511116752048579250$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3658$ | $205380$ | $12115798$ | $714924300$ | $42180058618$ | $2488651484820$ | $146830484850718$ | $8662995818654940$ | $511116750796517098$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 228 curves (of which all are hyperelliptic):
- $y^2=42 x^6+42 x^5+2 x^4+15 x^3+50 x^2+44 x+22$
- $y^2=25 x^6+25 x^5+4 x^4+30 x^3+41 x^2+29 x+44$
- $y^2=34 x^6+23 x^5+55 x^4+44 x^3+36 x^2+40 x+12$
- $y^2=9 x^6+46 x^5+51 x^4+29 x^3+13 x^2+21 x+24$
- $y^2=21 x^6+38 x^5+40 x^4+56 x^3+7 x^2+28 x+57$
- $y^2=42 x^6+17 x^5+21 x^4+53 x^3+14 x^2+56 x+55$
- $y^2=26 x^6+4 x^5+49 x^4+35 x^3+32 x^2+12 x+26$
- $y^2=52 x^6+8 x^5+39 x^4+11 x^3+5 x^2+24 x+52$
- $y^2=20 x^6+19 x^5+34 x^4+27 x^3+52 x^2+54 x+56$
- $y^2=40 x^6+38 x^5+9 x^4+54 x^3+45 x^2+49 x+53$
- $y^2=12 x^6+8 x^5+28 x^4+24 x^3+28 x^2+20 x+48$
- $y^2=24 x^6+16 x^5+56 x^4+48 x^3+56 x^2+40 x+37$
- $y^2=25 x^6+52 x^5+33 x^4+57 x^3+43 x^2+12 x+41$
- $y^2=50 x^6+45 x^5+7 x^4+55 x^3+27 x^2+24 x+23$
- $y^2=55 x^6+48 x^5+18 x^4+19 x^3+22 x^2+58 x+37$
- $y^2=51 x^6+37 x^5+36 x^4+38 x^3+44 x^2+57 x+15$
- $y^2=47 x^6+44 x^5+23 x^4+7 x^3+24 x^2+49 x+52$
- $y^2=35 x^6+29 x^5+46 x^4+14 x^3+48 x^2+39 x+45$
- $y^2=6 x^6+2 x^5+x^4+47 x^3+38 x^2+3 x+19$
- $y^2=12 x^6+4 x^5+2 x^4+35 x^3+17 x^2+6 x+38$
- and 208 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{30}, \sqrt{-206})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.dk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1545}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.a_adk | $4$ | (not in LMFDB) |