Properties

Label 4-104e2-1.1-c1e2-0-9
Degree 44
Conductor 1081610816
Sign 11
Analytic cond. 0.6896370.689637
Root an. cond. 0.9112870.911287
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 2·5-s + 5·9-s − 4·10-s − 4·11-s + 6·13-s − 4·16-s + 6·17-s + 10·18-s − 4·20-s − 8·22-s − 12·23-s − 7·25-s + 12·26-s − 8·32-s + 12·34-s + 10·36-s − 6·37-s − 8·44-s − 10·45-s − 24·46-s + 5·49-s − 14·50-s + 12·52-s + 8·55-s − 20·59-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.894·5-s + 5/3·9-s − 1.26·10-s − 1.20·11-s + 1.66·13-s − 16-s + 1.45·17-s + 2.35·18-s − 0.894·20-s − 1.70·22-s − 2.50·23-s − 7/5·25-s + 2.35·26-s − 1.41·32-s + 2.05·34-s + 5/3·36-s − 0.986·37-s − 1.20·44-s − 1.49·45-s − 3.53·46-s + 5/7·49-s − 1.97·50-s + 1.66·52-s + 1.07·55-s − 2.60·59-s + ⋯

Functional equation

Λ(s)=(10816s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 10816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(10816s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 10816 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 1081610816    =    261322^{6} \cdot 13^{2}
Sign: 11
Analytic conductor: 0.6896370.689637
Root analytic conductor: 0.9112870.911287
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 10816, ( :1/2,1/2), 1)(4,\ 10816,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.8046319111.804631911
L(12)L(\frac12) \approx 1.8046319111.804631911
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1pT+pT2 1 - p T + p T^{2}
13C2C_2 16T+pT2 1 - 6 T + p T^{2}
good3C22C_2^2 15T2+p2T4 1 - 5 T^{2} + p^{2} T^{4}
5C2C_2 (1+T+pT2)2 ( 1 + T + p T^{2} )^{2}
7C22C_2^2 15T2+p2T4 1 - 5 T^{2} + p^{2} T^{4}
11C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
17C2C_2 (13T+pT2)2 ( 1 - 3 T + p T^{2} )^{2}
19C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
23C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
29C22C_2^2 122T2+p2T4 1 - 22 T^{2} + p^{2} T^{4}
31C2C_2 (1pT2)2 ( 1 - p T^{2} )^{2}
37C2C_2 (1+3T+pT2)2 ( 1 + 3 T + p T^{2} )^{2}
41C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
43C22C_2^2 15T2+p2T4 1 - 5 T^{2} + p^{2} T^{4}
47C22C_2^2 145T2+p2T4 1 - 45 T^{2} + p^{2} T^{4}
53C22C_2^2 170T2+p2T4 1 - 70 T^{2} + p^{2} T^{4}
59C2C_2 (1+10T+pT2)2 ( 1 + 10 T + p T^{2} )^{2}
61C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
67C2C_2 (112T+pT2)2 ( 1 - 12 T + p T^{2} )^{2}
71C22C_2^2 1117T2+p2T4 1 - 117 T^{2} + p^{2} T^{4}
73C2C_2 (116T+pT2)(1+16T+pT2) ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} )
79C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
83C2C_2 (116T+pT2)2 ( 1 - 16 T + p T^{2} )^{2}
89C22C_2^2 1162T2+p2T4 1 - 162 T^{2} + p^{2} T^{4}
97C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.95530504425463177219684818725, −13.37173768154440220279298237117, −13.27491948009287716451620243992, −12.36455323142233149799899267619, −12.13823934744062902284794236554, −11.87880212660656222739612614403, −10.84737676313181404484593279239, −10.63166485054981770210982109794, −9.858004989560526093512736265896, −9.416061035242936798259608912489, −8.110565670284822805233160735207, −8.042626235264431202428795382995, −7.41462406189326598592223265204, −6.51233162850101765397403798126, −5.92452216695234809845577081561, −5.33318281045966834656803326883, −4.43460414278886521159715690280, −3.72887635245383174516693223809, −3.59233905038738281641359546513, −1.97087923560232949779890484285, 1.97087923560232949779890484285, 3.59233905038738281641359546513, 3.72887635245383174516693223809, 4.43460414278886521159715690280, 5.33318281045966834656803326883, 5.92452216695234809845577081561, 6.51233162850101765397403798126, 7.41462406189326598592223265204, 8.042626235264431202428795382995, 8.110565670284822805233160735207, 9.416061035242936798259608912489, 9.858004989560526093512736265896, 10.63166485054981770210982109794, 10.84737676313181404484593279239, 11.87880212660656222739612614403, 12.13823934744062902284794236554, 12.36455323142233149799899267619, 13.27491948009287716451620243992, 13.37173768154440220279298237117, 13.95530504425463177219684818725

Graph of the ZZ-function along the critical line