L(s) = 1 | + 2·2-s + 2·4-s − 2·5-s + 5·9-s − 4·10-s − 4·11-s + 6·13-s − 4·16-s + 6·17-s + 10·18-s − 4·20-s − 8·22-s − 12·23-s − 7·25-s + 12·26-s − 8·32-s + 12·34-s + 10·36-s − 6·37-s − 8·44-s − 10·45-s − 24·46-s + 5·49-s − 14·50-s + 12·52-s + 8·55-s − 20·59-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 0.894·5-s + 5/3·9-s − 1.26·10-s − 1.20·11-s + 1.66·13-s − 16-s + 1.45·17-s + 2.35·18-s − 0.894·20-s − 1.70·22-s − 2.50·23-s − 7/5·25-s + 2.35·26-s − 1.41·32-s + 2.05·34-s + 5/3·36-s − 0.986·37-s − 1.20·44-s − 1.49·45-s − 3.53·46-s + 5/7·49-s − 1.97·50-s + 1.66·52-s + 1.07·55-s − 2.60·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10816 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.804631911\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.804631911\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 - p T + p T^{2} \) |
| 13 | $C_2$ | \( 1 - 6 T + p T^{2} \) |
good | 3 | $C_2^2$ | \( 1 - 5 T^{2} + p^{2} T^{4} \) |
| 5 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 7 | $C_2^2$ | \( 1 - 5 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 43 | $C_2^2$ | \( 1 - 5 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 - 45 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 71 | $C_2^2$ | \( 1 - 117 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 16 T + p T^{2} )^{2} \) |
| 89 | $C_2^2$ | \( 1 - 162 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.95530504425463177219684818725, −13.37173768154440220279298237117, −13.27491948009287716451620243992, −12.36455323142233149799899267619, −12.13823934744062902284794236554, −11.87880212660656222739612614403, −10.84737676313181404484593279239, −10.63166485054981770210982109794, −9.858004989560526093512736265896, −9.416061035242936798259608912489, −8.110565670284822805233160735207, −8.042626235264431202428795382995, −7.41462406189326598592223265204, −6.51233162850101765397403798126, −5.92452216695234809845577081561, −5.33318281045966834656803326883, −4.43460414278886521159715690280, −3.72887635245383174516693223809, −3.59233905038738281641359546513, −1.97087923560232949779890484285,
1.97087923560232949779890484285, 3.59233905038738281641359546513, 3.72887635245383174516693223809, 4.43460414278886521159715690280, 5.33318281045966834656803326883, 5.92452216695234809845577081561, 6.51233162850101765397403798126, 7.41462406189326598592223265204, 8.042626235264431202428795382995, 8.110565670284822805233160735207, 9.416061035242936798259608912489, 9.858004989560526093512736265896, 10.63166485054981770210982109794, 10.84737676313181404484593279239, 11.87880212660656222739612614403, 12.13823934744062902284794236554, 12.36455323142233149799899267619, 13.27491948009287716451620243992, 13.37173768154440220279298237117, 13.95530504425463177219684818725