Properties

Label 2.2.104.1-1.1-b
Base field \(\Q(\sqrt{26}) \)
Weight $[2, 2]$
Level norm $1$
Level $[1, 1, 1]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{26}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 26\); narrow class number \(2\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[1, 1, 1]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}2$
5 $[5, 5, w + 1]$ $-1$
5 $[5, 5, w + 4]$ $-1$
9 $[9, 3, 3]$ $\phantom{-}5$
11 $[11, 11, w + 2]$ $-2$
11 $[11, 11, w + 9]$ $-2$
13 $[13, 13, w]$ $\phantom{-}6$
17 $[17, 17, w + 3]$ $\phantom{-}3$
17 $[17, 17, -w + 3]$ $\phantom{-}3$
19 $[19, 19, w + 8]$ $\phantom{-}0$
19 $[19, 19, w + 11]$ $\phantom{-}0$
23 $[23, 23, -w - 7]$ $-6$
23 $[23, 23, w - 7]$ $-6$
37 $[37, 37, w + 10]$ $-3$
37 $[37, 37, w + 27]$ $-3$
49 $[49, 7, -7]$ $\phantom{-}5$
59 $[59, 59, w + 12]$ $-10$
59 $[59, 59, w + 47]$ $-10$
67 $[67, 67, w + 19]$ $\phantom{-}12$
67 $[67, 67, w + 48]$ $\phantom{-}12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).