Properties

Label 2-95550-1.1-c1-0-107
Degree $2$
Conductor $95550$
Sign $1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 6·11-s + 12-s − 13-s + 16-s − 2·17-s + 18-s + 2·19-s + 6·22-s + 4·23-s + 24-s − 26-s + 27-s + 8·29-s − 4·31-s + 32-s + 6·33-s − 2·34-s + 36-s − 2·37-s + 2·38-s − 39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.288·12-s − 0.277·13-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.458·19-s + 1.27·22-s + 0.834·23-s + 0.204·24-s − 0.196·26-s + 0.192·27-s + 1.48·29-s − 0.718·31-s + 0.176·32-s + 1.04·33-s − 0.342·34-s + 1/6·36-s − 0.328·37-s + 0.324·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.730202452\)
\(L(\frac12)\) \(\approx\) \(6.730202452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83709789342754, −13.32908112771882, −13.01921785316343, −12.28665471309472, −11.81195912270793, −11.61805921141342, −11.00616643421082, −10.18108645684983, −9.979399444548530, −9.265416019076131, −8.675970224464870, −8.542967388023659, −7.642285254337306, −7.078498960788414, −6.631130868317651, −6.386527076738203, −5.505707993254293, −4.834998428485891, −4.561040610769045, −3.690824069852586, −3.444686350936847, −2.820696078786231, −1.954092474845064, −1.514802040500580, −0.7064836886121870, 0.7064836886121870, 1.514802040500580, 1.954092474845064, 2.820696078786231, 3.444686350936847, 3.690824069852586, 4.561040610769045, 4.834998428485891, 5.505707993254293, 6.386527076738203, 6.631130868317651, 7.078498960788414, 7.642285254337306, 8.542967388023659, 8.675970224464870, 9.265416019076131, 9.979399444548530, 10.18108645684983, 11.00616643421082, 11.61805921141342, 11.81195912270793, 12.28665471309472, 13.01921785316343, 13.32908112771882, 13.83709789342754

Graph of the $Z$-function along the critical line