| L(s) = 1 | − 2·2-s + i·3-s + 2·4-s − 2i·6-s + 3i·7-s + 2·9-s − 3·11-s + 2i·12-s − 6·13-s − 6i·14-s − 4·16-s − 2·17-s − 4·18-s − 6i·19-s − 3·21-s + 6·22-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 0.577i·3-s + 4-s − 0.816i·6-s + 1.13i·7-s + 0.666·9-s − 0.904·11-s + 0.577i·12-s − 1.66·13-s − 1.60i·14-s − 16-s − 0.485·17-s − 0.942·18-s − 1.37i·19-s − 0.654·21-s + 1.27·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.588 + 0.808i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.588 + 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 37 | \( 1 + (6 + i)T \) |
| good | 2 | \( 1 + 2T + 2T^{2} \) |
| 3 | \( 1 - iT - 3T^{2} \) |
| 7 | \( 1 - 3iT - 7T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 + 6T + 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 6iT - 19T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 + 6T + 43T^{2} \) |
| 47 | \( 1 - 3iT - 47T^{2} \) |
| 53 | \( 1 + 9iT - 53T^{2} \) |
| 59 | \( 1 - 4iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 12iT - 67T^{2} \) |
| 71 | \( 1 + 3T + 71T^{2} \) |
| 73 | \( 1 + 9iT - 73T^{2} \) |
| 79 | \( 1 + 6iT - 79T^{2} \) |
| 83 | \( 1 + 9iT - 83T^{2} \) |
| 89 | \( 1 - 14iT - 89T^{2} \) |
| 97 | \( 1 + 12T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.583629552497849715776819353613, −9.140132718435261482347671771552, −8.386104903181307551950930924229, −7.34602669372053426517570052138, −6.82019304187295289433647774834, −5.11731312134572542181451515571, −4.78708295854061940987114926688, −2.91404114078121048971487154030, −1.97141603022799877670491900210, 0,
1.33337464638965311817477155235, 2.44157127950063530936046869226, 4.12158679576840741710254206017, 5.11367360683593000206506120623, 6.69189628746302809585322722479, 7.31859599984709368908532779146, 7.73524956642737116298519328316, 8.568120197834974943947965229541, 9.856708578491769862192096362781