Properties

Label 925.2.d.a
Level $925$
Weight $2$
Character orbit 925.d
Analytic conductor $7.386$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(924,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.924"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,0,4,0,0,0,0,4,0,-6,0,-12,0,0,-8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 37)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} - i q^{3} + 2 q^{4} + 2 i q^{6} - 3 i q^{7} + 2 q^{9} - 3 q^{11} - 2 i q^{12} - 6 q^{13} + 6 i q^{14} - 4 q^{16} - 2 q^{17} - 4 q^{18} + 6 i q^{19} - 3 q^{21} + 6 q^{22} + 4 q^{23} + 12 q^{26} + \cdots - 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 4 q^{4} + 4 q^{9} - 6 q^{11} - 12 q^{13} - 8 q^{16} - 4 q^{17} - 8 q^{18} - 6 q^{21} + 12 q^{22} + 8 q^{23} + 24 q^{26} + 16 q^{32} + 8 q^{34} + 8 q^{36} - 12 q^{37} - 6 q^{41} + 12 q^{42}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
924.1
1.00000i
1.00000i
−2.00000 1.00000i 2.00000 0 2.00000i 3.00000i 0 2.00000 0
924.2 −2.00000 1.00000i 2.00000 0 2.00000i 3.00000i 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
185.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 925.2.d.a 2
5.b even 2 1 925.2.d.d 2
5.c odd 4 1 37.2.b.a 2
5.c odd 4 1 925.2.c.b 2
15.e even 4 1 333.2.c.a 2
20.e even 4 1 592.2.g.b 2
37.b even 2 1 925.2.d.d 2
40.i odd 4 1 2368.2.g.f 2
40.k even 4 1 2368.2.g.b 2
60.l odd 4 1 5328.2.h.c 2
185.d even 2 1 inner 925.2.d.a 2
185.f even 4 1 1369.2.a.f 1
185.h odd 4 1 37.2.b.a 2
185.h odd 4 1 925.2.c.b 2
185.k even 4 1 1369.2.a.a 1
555.n even 4 1 333.2.c.a 2
740.m even 4 1 592.2.g.b 2
1480.x odd 4 1 2368.2.g.f 2
1480.bh even 4 1 2368.2.g.b 2
2220.bf odd 4 1 5328.2.h.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
37.2.b.a 2 5.c odd 4 1
37.2.b.a 2 185.h odd 4 1
333.2.c.a 2 15.e even 4 1
333.2.c.a 2 555.n even 4 1
592.2.g.b 2 20.e even 4 1
592.2.g.b 2 740.m even 4 1
925.2.c.b 2 5.c odd 4 1
925.2.c.b 2 185.h odd 4 1
925.2.d.a 2 1.a even 1 1 trivial
925.2.d.a 2 185.d even 2 1 inner
925.2.d.d 2 5.b even 2 1
925.2.d.d 2 37.b even 2 1
1369.2.a.a 1 185.k even 4 1
1369.2.a.f 1 185.f even 4 1
2368.2.g.b 2 40.k even 4 1
2368.2.g.b 2 1480.bh even 4 1
2368.2.g.f 2 40.i odd 4 1
2368.2.g.f 2 1480.x odd 4 1
5328.2.h.c 2 60.l odd 4 1
5328.2.h.c 2 2220.bf odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 9 \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( (T + 6)^{2} \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 36 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 16 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 37 \) Copy content Toggle raw display
$41$ \( (T + 3)^{2} \) Copy content Toggle raw display
$43$ \( (T + 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 9 \) Copy content Toggle raw display
$53$ \( T^{2} + 81 \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T + 3)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 81 \) Copy content Toggle raw display
$79$ \( T^{2} + 36 \) Copy content Toggle raw display
$83$ \( T^{2} + 81 \) Copy content Toggle raw display
$89$ \( T^{2} + 196 \) Copy content Toggle raw display
$97$ \( (T + 12)^{2} \) Copy content Toggle raw display
show more
show less