Properties

Label 2-91728-1.1-c1-0-14
Degree $2$
Conductor $91728$
Sign $1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·11-s − 13-s + 3·17-s + 19-s − 4·23-s − 25-s − 3·29-s − 4·31-s + 2·37-s + 10·41-s + 6·43-s + 13·47-s − 9·53-s + 6·55-s − 11·59-s − 61-s + 2·65-s − 3·67-s + 13·71-s + 8·73-s − 14·79-s + 16·83-s − 6·85-s − 6·89-s − 2·95-s − 8·97-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.904·11-s − 0.277·13-s + 0.727·17-s + 0.229·19-s − 0.834·23-s − 1/5·25-s − 0.557·29-s − 0.718·31-s + 0.328·37-s + 1.56·41-s + 0.914·43-s + 1.89·47-s − 1.23·53-s + 0.809·55-s − 1.43·59-s − 0.128·61-s + 0.248·65-s − 0.366·67-s + 1.54·71-s + 0.936·73-s − 1.57·79-s + 1.75·83-s − 0.650·85-s − 0.635·89-s − 0.205·95-s − 0.812·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9411563025\)
\(L(\frac12)\) \(\approx\) \(0.9411563025\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 13 T + p T^{2} \) 1.71.an
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.96174949600257, −13.37375166614757, −12.56710751497410, −12.49308574022143, −11.99963765773279, −11.31982043311514, −10.83850253837757, −10.61863579394606, −9.723876218741095, −9.478016003501231, −8.876818860968486, −8.020094505835165, −7.809282201488805, −7.516482434438627, −6.869513844737244, −6.005925129322067, −5.671839399731101, −5.106179938952274, −4.308581889714937, −3.999166534615188, −3.316581955247408, −2.671159697526390, −2.099575103006815, −1.165711446926433, −0.3310123142186899, 0.3310123142186899, 1.165711446926433, 2.099575103006815, 2.671159697526390, 3.316581955247408, 3.999166534615188, 4.308581889714937, 5.106179938952274, 5.671839399731101, 6.005925129322067, 6.869513844737244, 7.516482434438627, 7.809282201488805, 8.020094505835165, 8.876818860968486, 9.478016003501231, 9.723876218741095, 10.61863579394606, 10.83850253837757, 11.31982043311514, 11.99963765773279, 12.49308574022143, 12.56710751497410, 13.37375166614757, 13.96174949600257

Graph of the $Z$-function along the critical line