Properties

Label 2-91728-1.1-c1-0-137
Degree $2$
Conductor $91728$
Sign $-1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 3·11-s + 13-s + 5·17-s + 19-s − 25-s + 29-s + 4·31-s − 2·37-s + 10·41-s + 10·43-s + 47-s + 3·53-s − 6·55-s − 3·59-s + 5·61-s − 2·65-s − 5·67-s − 71-s − 12·73-s + 6·79-s − 16·83-s − 10·85-s − 14·89-s − 2·95-s − 4·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.904·11-s + 0.277·13-s + 1.21·17-s + 0.229·19-s − 1/5·25-s + 0.185·29-s + 0.718·31-s − 0.328·37-s + 1.56·41-s + 1.52·43-s + 0.145·47-s + 0.412·53-s − 0.809·55-s − 0.390·59-s + 0.640·61-s − 0.248·65-s − 0.610·67-s − 0.118·71-s − 1.40·73-s + 0.675·79-s − 1.75·83-s − 1.08·85-s − 1.48·89-s − 0.205·95-s − 0.406·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.04503150897493, −13.80249586428775, −13.01561167392718, −12.46117946837039, −12.11090987989892, −11.72008621040497, −11.16014711208180, −10.80515247643059, −9.925424670540321, −9.816476179101996, −8.900375314209099, −8.736850048350425, −7.894687639369599, −7.619980671900048, −7.136450732452461, −6.436239559941591, −5.888988409350960, −5.453003842948430, −4.615424184942911, −4.031688415101120, −3.803560820330173, −2.989383710324169, −2.487280404297525, −1.345394719239304, −1.021309364424408, 0, 1.021309364424408, 1.345394719239304, 2.487280404297525, 2.989383710324169, 3.803560820330173, 4.031688415101120, 4.615424184942911, 5.453003842948430, 5.888988409350960, 6.436239559941591, 7.136450732452461, 7.619980671900048, 7.894687639369599, 8.736850048350425, 8.900375314209099, 9.816476179101996, 9.925424670540321, 10.80515247643059, 11.16014711208180, 11.72008621040497, 12.11090987989892, 12.46117946837039, 13.01561167392718, 13.80249586428775, 14.04503150897493

Graph of the $Z$-function along the critical line