| L(s)  = 1  |         − 2·5-s             + 3·11-s     + 13-s         + 5·17-s     + 19-s             − 25-s         + 29-s     + 4·31-s             − 2·37-s         + 10·41-s     + 10·43-s         + 47-s             + 3·53-s     − 6·55-s         − 3·59-s     + 5·61-s         − 2·65-s     − 5·67-s         − 71-s     − 12·73-s             + 6·79-s         − 16·83-s     − 10·85-s         − 14·89-s             − 2·95-s     − 4·97-s         + 101-s  + ⋯ | 
 
| L(s)  = 1  |         − 0.894·5-s             + 0.904·11-s     + 0.277·13-s         + 1.21·17-s     + 0.229·19-s             − 1/5·25-s         + 0.185·29-s     + 0.718·31-s             − 0.328·37-s         + 1.56·41-s     + 1.52·43-s         + 0.145·47-s             + 0.412·53-s     − 0.809·55-s         − 0.390·59-s     + 0.640·61-s         − 0.248·65-s     − 0.610·67-s         − 0.118·71-s     − 1.40·73-s             + 0.675·79-s         − 1.75·83-s     − 1.08·85-s         − 1.48·89-s             − 0.205·95-s     − 0.406·97-s         + 0.0995·101-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 7 |  \( 1 \)  |    | 
 | 13 |  \( 1 - T \)  |    | 
| good | 5 |  \( 1 + 2 T + p T^{2} \)  |  1.5.c  | 
 | 11 |  \( 1 - 3 T + p T^{2} \)  |  1.11.ad  | 
 | 17 |  \( 1 - 5 T + p T^{2} \)  |  1.17.af  | 
 | 19 |  \( 1 - T + p T^{2} \)  |  1.19.ab  | 
 | 23 |  \( 1 + p T^{2} \)  |  1.23.a  | 
 | 29 |  \( 1 - T + p T^{2} \)  |  1.29.ab  | 
 | 31 |  \( 1 - 4 T + p T^{2} \)  |  1.31.ae  | 
 | 37 |  \( 1 + 2 T + p T^{2} \)  |  1.37.c  | 
 | 41 |  \( 1 - 10 T + p T^{2} \)  |  1.41.ak  | 
 | 43 |  \( 1 - 10 T + p T^{2} \)  |  1.43.ak  | 
 | 47 |  \( 1 - T + p T^{2} \)  |  1.47.ab  | 
 | 53 |  \( 1 - 3 T + p T^{2} \)  |  1.53.ad  | 
 | 59 |  \( 1 + 3 T + p T^{2} \)  |  1.59.d  | 
 | 61 |  \( 1 - 5 T + p T^{2} \)  |  1.61.af  | 
 | 67 |  \( 1 + 5 T + p T^{2} \)  |  1.67.f  | 
 | 71 |  \( 1 + T + p T^{2} \)  |  1.71.b  | 
 | 73 |  \( 1 + 12 T + p T^{2} \)  |  1.73.m  | 
 | 79 |  \( 1 - 6 T + p T^{2} \)  |  1.79.ag  | 
 | 83 |  \( 1 + 16 T + p T^{2} \)  |  1.83.q  | 
 | 89 |  \( 1 + 14 T + p T^{2} \)  |  1.89.o  | 
 | 97 |  \( 1 + 4 T + p T^{2} \)  |  1.97.e  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.04503150897493, −13.80249586428775, −13.01561167392718, −12.46117946837039, −12.11090987989892, −11.72008621040497, −11.16014711208180, −10.80515247643059, −9.925424670540321, −9.816476179101996, −8.900375314209099, −8.736850048350425, −7.894687639369599, −7.619980671900048, −7.136450732452461, −6.436239559941591, −5.888988409350960, −5.453003842948430, −4.615424184942911, −4.031688415101120, −3.803560820330173, −2.989383710324169, −2.487280404297525, −1.345394719239304, −1.021309364424408, 0, 
1.021309364424408, 1.345394719239304, 2.487280404297525, 2.989383710324169, 3.803560820330173, 4.031688415101120, 4.615424184942911, 5.453003842948430, 5.888988409350960, 6.436239559941591, 7.136450732452461, 7.619980671900048, 7.894687639369599, 8.736850048350425, 8.900375314209099, 9.816476179101996, 9.925424670540321, 10.80515247643059, 11.16014711208180, 11.72008621040497, 12.11090987989892, 12.46117946837039, 13.01561167392718, 13.80249586428775, 14.04503150897493