Properties

Label 2-90090-1.1-c1-0-26
Degree $2$
Conductor $90090$
Sign $1$
Analytic cond. $719.372$
Root an. cond. $26.8211$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 7-s − 8-s + 10-s − 11-s − 13-s − 14-s + 16-s − 2·19-s − 20-s + 22-s + 8·23-s + 25-s + 26-s + 28-s + 2·29-s − 32-s − 35-s + 4·37-s + 2·38-s + 40-s − 2·41-s + 10·43-s − 44-s − 8·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s − 0.353·8-s + 0.316·10-s − 0.301·11-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.458·19-s − 0.223·20-s + 0.213·22-s + 1.66·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s + 0.371·29-s − 0.176·32-s − 0.169·35-s + 0.657·37-s + 0.324·38-s + 0.158·40-s − 0.312·41-s + 1.52·43-s − 0.150·44-s − 1.17·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90090\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(719.372\)
Root analytic conductor: \(26.8211\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 90090,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.783599609\)
\(L(\frac12)\) \(\approx\) \(1.783599609\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 + T \)
good17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.87437277993282, −13.31435317982161, −12.77596485588023, −12.35968423596899, −11.80458990137634, −11.26201528879566, −10.90172956774136, −10.45786252920229, −9.899031931473541, −9.293997923333891, −8.767458283158740, −8.482931697162476, −7.750739149651475, −7.407644330829805, −6.905742656286352, −6.358298485154407, −5.565046837509140, −5.194586826554563, −4.387359179143079, −4.006637346044001, −3.057306323963513, −2.639511902654950, −1.971781552722622, −1.040367825144603, −0.5687328558939420, 0.5687328558939420, 1.040367825144603, 1.971781552722622, 2.639511902654950, 3.057306323963513, 4.006637346044001, 4.387359179143079, 5.194586826554563, 5.565046837509140, 6.358298485154407, 6.905742656286352, 7.407644330829805, 7.750739149651475, 8.482931697162476, 8.767458283158740, 9.293997923333891, 9.899031931473541, 10.45786252920229, 10.90172956774136, 11.26201528879566, 11.80458990137634, 12.35968423596899, 12.77596485588023, 13.31435317982161, 13.87437277993282

Graph of the $Z$-function along the critical line