Properties

Label 2-8910-1.1-c1-0-133
Degree $2$
Conductor $8910$
Sign $-1$
Analytic cond. $71.1467$
Root an. cond. $8.43485$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 11-s − 4·13-s + 14-s + 16-s − 4·17-s − 2·19-s − 20-s − 22-s − 23-s + 25-s − 4·26-s + 28-s + 9·29-s + 6·31-s + 32-s − 4·34-s − 35-s + 8·37-s − 2·38-s − 40-s + 9·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.301·11-s − 1.10·13-s + 0.267·14-s + 1/4·16-s − 0.970·17-s − 0.458·19-s − 0.223·20-s − 0.213·22-s − 0.208·23-s + 1/5·25-s − 0.784·26-s + 0.188·28-s + 1.67·29-s + 1.07·31-s + 0.176·32-s − 0.685·34-s − 0.169·35-s + 1.31·37-s − 0.324·38-s − 0.158·40-s + 1.40·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8910\)    =    \(2 \cdot 3^{4} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(71.1467\)
Root analytic conductor: \(8.43485\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8910,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 15 T + p T^{2} \) 1.67.p
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38006912181173297171525780403, −6.60837295539958815799503566602, −6.10459436386714689599598354857, −5.09893315499454931978711997668, −4.51695451603935545624354078712, −4.18923127271044193809209201386, −2.84567172960419379031006463514, −2.57578217717166979841344291284, −1.37002369104139076315126397014, 0, 1.37002369104139076315126397014, 2.57578217717166979841344291284, 2.84567172960419379031006463514, 4.18923127271044193809209201386, 4.51695451603935545624354078712, 5.09893315499454931978711997668, 6.10459436386714689599598354857, 6.60837295539958815799503566602, 7.38006912181173297171525780403

Graph of the $Z$-function along the critical line