L(s) = 1 | + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 11-s − 4·13-s + 14-s + 16-s − 4·17-s − 2·19-s − 20-s − 22-s − 23-s + 25-s − 4·26-s + 28-s + 9·29-s + 6·31-s + 32-s − 4·34-s − 35-s + 8·37-s − 2·38-s − 40-s + 9·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.301·11-s − 1.10·13-s + 0.267·14-s + 1/4·16-s − 0.970·17-s − 0.458·19-s − 0.223·20-s − 0.213·22-s − 0.208·23-s + 1/5·25-s − 0.784·26-s + 0.188·28-s + 1.67·29-s + 1.07·31-s + 0.176·32-s − 0.685·34-s − 0.169·35-s + 1.31·37-s − 0.324·38-s − 0.158·40-s + 1.40·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 + T \) | |
| 11 | \( 1 + T \) | |
good | 7 | \( 1 - T + p T^{2} \) | 1.7.ab |
| 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e |
| 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e |
| 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c |
| 23 | \( 1 + T + p T^{2} \) | 1.23.b |
| 29 | \( 1 - 9 T + p T^{2} \) | 1.29.aj |
| 31 | \( 1 - 6 T + p T^{2} \) | 1.31.ag |
| 37 | \( 1 - 8 T + p T^{2} \) | 1.37.ai |
| 41 | \( 1 - 9 T + p T^{2} \) | 1.41.aj |
| 43 | \( 1 + 12 T + p T^{2} \) | 1.43.m |
| 47 | \( 1 - 11 T + p T^{2} \) | 1.47.al |
| 53 | \( 1 + 12 T + p T^{2} \) | 1.53.m |
| 59 | \( 1 + 4 T + p T^{2} \) | 1.59.e |
| 61 | \( 1 - 7 T + p T^{2} \) | 1.61.ah |
| 67 | \( 1 + 15 T + p T^{2} \) | 1.67.p |
| 71 | \( 1 + 4 T + p T^{2} \) | 1.71.e |
| 73 | \( 1 + 8 T + p T^{2} \) | 1.73.i |
| 79 | \( 1 + 2 T + p T^{2} \) | 1.79.c |
| 83 | \( 1 + 11 T + p T^{2} \) | 1.83.l |
| 89 | \( 1 + 5 T + p T^{2} \) | 1.89.f |
| 97 | \( 1 + 12 T + p T^{2} \) | 1.97.m |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.38006912181173297171525780403, −6.60837295539958815799503566602, −6.10459436386714689599598354857, −5.09893315499454931978711997668, −4.51695451603935545624354078712, −4.18923127271044193809209201386, −2.84567172960419379031006463514, −2.57578217717166979841344291284, −1.37002369104139076315126397014, 0,
1.37002369104139076315126397014, 2.57578217717166979841344291284, 2.84567172960419379031006463514, 4.18923127271044193809209201386, 4.51695451603935545624354078712, 5.09893315499454931978711997668, 6.10459436386714689599598354857, 6.60837295539958815799503566602, 7.38006912181173297171525780403