| L(s) = 1 | + (1.67 + 1.67i)2-s + (2.17 + 2.17i)3-s + 3.61i·4-s + 7.29i·6-s + (−0.844 − 2.50i)7-s + (−2.71 + 2.71i)8-s + 6.47i·9-s + 2.61·11-s + (−7.87 + 7.87i)12-s + (−1.02 − 1.02i)13-s + (2.78 − 5.61i)14-s − 1.85·16-s + (−0.831 + 0.831i)17-s + (−10.8 + 10.8i)18-s − 7.29·19-s + ⋯ |
| L(s) = 1 | + (1.18 + 1.18i)2-s + (1.25 + 1.25i)3-s + 1.80i·4-s + 2.97i·6-s + (−0.319 − 0.947i)7-s + (−0.958 + 0.958i)8-s + 2.15i·9-s + 0.789·11-s + (−2.27 + 2.27i)12-s + (−0.284 − 0.284i)13-s + (0.744 − 1.50i)14-s − 0.463·16-s + (−0.201 + 0.201i)17-s + (−2.55 + 2.55i)18-s − 1.67·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 - 0.444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.895 - 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.958729 + 4.09076i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.958729 + 4.09076i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 + (0.844 + 2.50i)T \) |
| good | 2 | \( 1 + (-1.67 - 1.67i)T + 2iT^{2} \) |
| 3 | \( 1 + (-2.17 - 2.17i)T + 3iT^{2} \) |
| 11 | \( 1 - 2.61T + 11T^{2} \) |
| 13 | \( 1 + (1.02 + 1.02i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.831 - 0.831i)T - 17iT^{2} \) |
| 19 | \( 1 + 7.29T + 19T^{2} \) |
| 23 | \( 1 + (-5.02 + 5.02i)T - 23iT^{2} \) |
| 29 | \( 1 + 8.70iT - 29T^{2} \) |
| 31 | \( 1 - 1.06iT - 31T^{2} \) |
| 37 | \( 1 + (-3.10 - 3.10i)T + 37iT^{2} \) |
| 41 | \( 1 + 5.57iT - 41T^{2} \) |
| 43 | \( 1 + (1.03 - 1.03i)T - 43iT^{2} \) |
| 47 | \( 1 + (5.37 - 5.37i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.99 - 3.99i)T - 53iT^{2} \) |
| 59 | \( 1 - 10.7T + 59T^{2} \) |
| 61 | \( 1 + 7.95iT - 61T^{2} \) |
| 67 | \( 1 + (0.640 + 0.640i)T + 67iT^{2} \) |
| 71 | \( 1 - 1.76T + 71T^{2} \) |
| 73 | \( 1 + (-10.4 - 10.4i)T + 73iT^{2} \) |
| 79 | \( 1 + 3.70iT - 79T^{2} \) |
| 83 | \( 1 + (3.20 + 3.20i)T + 83iT^{2} \) |
| 89 | \( 1 + 11.8T + 89T^{2} \) |
| 97 | \( 1 + (1.02 - 1.02i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32439579521352119677203872858, −9.565331256053146876626101509009, −8.543857996676852979686574810408, −8.009162220615031051955271623001, −6.94861824463455409509329372811, −6.22380859783111544405267925514, −4.81997104060353376638885447718, −4.26794455838272757492399576628, −3.69970405218588705564026717710, −2.62945049483515324493667451688,
1.46470011930566255211256503101, 2.26308287986561004967232111913, 3.06635428629353774344432295766, 3.90235804454047618171699198961, 5.18452870968399870100942729568, 6.35733402621809587154458172014, 6.98199894959915431528207626797, 8.293139778689847808515203973605, 9.025637321204586395884747861856, 9.677175259005608896912480417782