Properties

Label 2-858-1.1-c1-0-17
Degree $2$
Conductor $858$
Sign $1$
Analytic cond. $6.85116$
Root an. cond. $2.61747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 2·5-s + 6-s + 4·7-s + 8-s + 9-s + 2·10-s + 11-s + 12-s − 13-s + 4·14-s + 2·15-s + 16-s − 8·17-s + 18-s − 6·19-s + 2·20-s + 4·21-s + 22-s − 6·23-s + 24-s − 25-s − 26-s + 27-s + 4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.301·11-s + 0.288·12-s − 0.277·13-s + 1.06·14-s + 0.516·15-s + 1/4·16-s − 1.94·17-s + 0.235·18-s − 1.37·19-s + 0.447·20-s + 0.872·21-s + 0.213·22-s − 1.25·23-s + 0.204·24-s − 1/5·25-s − 0.196·26-s + 0.192·27-s + 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(858\)    =    \(2 \cdot 3 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(6.85116\)
Root analytic conductor: \(2.61747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 858,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.606923730\)
\(L(\frac12)\) \(\approx\) \(3.606923730\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31160160089939555137362853114, −9.223837190946646176988675459038, −8.484705470801542137562478640847, −7.63986618398519576100110925605, −6.57651112815013131067556299490, −5.76124847444114544900893975199, −4.60896546773282466465581973181, −4.09464619000295058481802737653, −2.26326736979752848209934129716, −1.92814877972623226631135598752, 1.92814877972623226631135598752, 2.26326736979752848209934129716, 4.09464619000295058481802737653, 4.60896546773282466465581973181, 5.76124847444114544900893975199, 6.57651112815013131067556299490, 7.63986618398519576100110925605, 8.484705470801542137562478640847, 9.223837190946646176988675459038, 10.31160160089939555137362853114

Graph of the $Z$-function along the critical line