Properties

Label 2-8208-1.1-c1-0-126
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.40·5-s + 4.51·7-s − 6.07·11-s − 4.91·13-s − 0.433·17-s − 19-s − 0.995·23-s − 3.03·25-s + 2.23·29-s + 1.27·31-s + 6.31·35-s + 3.80·37-s + 5.31·41-s + 1.70·43-s − 9.71·47-s + 13.3·49-s − 4.70·53-s − 8.51·55-s − 8.18·59-s + 12.2·61-s − 6.88·65-s + 12.0·67-s + 9.35·71-s − 7.79·73-s − 27.4·77-s − 10.3·79-s − 10.5·83-s + ⋯
L(s)  = 1  + 0.626·5-s + 1.70·7-s − 1.83·11-s − 1.36·13-s − 0.105·17-s − 0.229·19-s − 0.207·23-s − 0.607·25-s + 0.415·29-s + 0.229·31-s + 1.06·35-s + 0.625·37-s + 0.830·41-s + 0.260·43-s − 1.41·47-s + 1.90·49-s − 0.646·53-s − 1.14·55-s − 1.06·59-s + 1.57·61-s − 0.853·65-s + 1.47·67-s + 1.11·71-s − 0.911·73-s − 3.12·77-s − 1.16·79-s − 1.15·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 1.40T + 5T^{2} \)
7 \( 1 - 4.51T + 7T^{2} \)
11 \( 1 + 6.07T + 11T^{2} \)
13 \( 1 + 4.91T + 13T^{2} \)
17 \( 1 + 0.433T + 17T^{2} \)
23 \( 1 + 0.995T + 23T^{2} \)
29 \( 1 - 2.23T + 29T^{2} \)
31 \( 1 - 1.27T + 31T^{2} \)
37 \( 1 - 3.80T + 37T^{2} \)
41 \( 1 - 5.31T + 41T^{2} \)
43 \( 1 - 1.70T + 43T^{2} \)
47 \( 1 + 9.71T + 47T^{2} \)
53 \( 1 + 4.70T + 53T^{2} \)
59 \( 1 + 8.18T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 - 12.0T + 67T^{2} \)
71 \( 1 - 9.35T + 71T^{2} \)
73 \( 1 + 7.79T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 + 10.5T + 83T^{2} \)
89 \( 1 + 5.84T + 89T^{2} \)
97 \( 1 - 1.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74202956574646015300436542346, −6.90385829465246763432104527941, −5.87719214060592953428584699340, −5.21110859968465922670463925484, −4.89327472570764189140461286276, −4.13336104208746430612426405191, −2.64768513023979003205499484970, −2.36507443033027796195479622851, −1.43047361805966256365616795650, 0, 1.43047361805966256365616795650, 2.36507443033027796195479622851, 2.64768513023979003205499484970, 4.13336104208746430612426405191, 4.89327472570764189140461286276, 5.21110859968465922670463925484, 5.87719214060592953428584699340, 6.90385829465246763432104527941, 7.74202956574646015300436542346

Graph of the $Z$-function along the critical line