Properties

Label 8208.2.a.ce.1.5
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-2,0,-2,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 18x^{4} + 17x^{3} + 72x^{2} + 29x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.40017\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.40017 q^{5} +4.51232 q^{7} -6.07883 q^{11} -4.91692 q^{13} -0.433490 q^{17} -1.00000 q^{19} -0.995569 q^{23} -3.03952 q^{25} +2.23826 q^{29} +1.27849 q^{31} +6.31802 q^{35} +3.80570 q^{37} +5.31802 q^{41} +1.70663 q^{43} -9.71819 q^{47} +13.3610 q^{49} -4.70755 q^{53} -8.51140 q^{55} -8.18407 q^{59} +12.2683 q^{61} -6.88453 q^{65} +12.0730 q^{67} +9.35640 q^{71} -7.79011 q^{73} -27.4296 q^{77} -10.3460 q^{79} -10.5114 q^{83} -0.606959 q^{85} -5.84500 q^{89} -22.1867 q^{91} -1.40017 q^{95} +1.47372 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{5} - 2 q^{7} - 3 q^{11} + q^{13} - 7 q^{17} - 6 q^{19} + 3 q^{23} + 10 q^{25} + 6 q^{29} - 5 q^{31} - 3 q^{35} + 11 q^{37} - 9 q^{41} - 7 q^{43} - 7 q^{47} + 20 q^{49} - 11 q^{53} - 22 q^{55}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.40017 0.626175 0.313087 0.949724i \(-0.398637\pi\)
0.313087 + 0.949724i \(0.398637\pi\)
\(6\) 0 0
\(7\) 4.51232 1.70550 0.852749 0.522321i \(-0.174934\pi\)
0.852749 + 0.522321i \(0.174934\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.07883 −1.83284 −0.916418 0.400221i \(-0.868933\pi\)
−0.916418 + 0.400221i \(0.868933\pi\)
\(12\) 0 0
\(13\) −4.91692 −1.36371 −0.681855 0.731488i \(-0.738826\pi\)
−0.681855 + 0.731488i \(0.738826\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.433490 −0.105137 −0.0525683 0.998617i \(-0.516741\pi\)
−0.0525683 + 0.998617i \(0.516741\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.995569 −0.207590 −0.103795 0.994599i \(-0.533099\pi\)
−0.103795 + 0.994599i \(0.533099\pi\)
\(24\) 0 0
\(25\) −3.03952 −0.607905
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.23826 0.415635 0.207817 0.978168i \(-0.433364\pi\)
0.207817 + 0.978168i \(0.433364\pi\)
\(30\) 0 0
\(31\) 1.27849 0.229624 0.114812 0.993387i \(-0.463373\pi\)
0.114812 + 0.993387i \(0.463373\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.31802 1.06794
\(36\) 0 0
\(37\) 3.80570 0.625652 0.312826 0.949810i \(-0.398724\pi\)
0.312826 + 0.949810i \(0.398724\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.31802 0.830535 0.415267 0.909699i \(-0.363688\pi\)
0.415267 + 0.909699i \(0.363688\pi\)
\(42\) 0 0
\(43\) 1.70663 0.260258 0.130129 0.991497i \(-0.458461\pi\)
0.130129 + 0.991497i \(0.458461\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.71819 −1.41754 −0.708772 0.705438i \(-0.750750\pi\)
−0.708772 + 0.705438i \(0.750750\pi\)
\(48\) 0 0
\(49\) 13.3610 1.90872
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.70755 −0.646632 −0.323316 0.946291i \(-0.604798\pi\)
−0.323316 + 0.946291i \(0.604798\pi\)
\(54\) 0 0
\(55\) −8.51140 −1.14768
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.18407 −1.06548 −0.532738 0.846280i \(-0.678837\pi\)
−0.532738 + 0.846280i \(0.678837\pi\)
\(60\) 0 0
\(61\) 12.2683 1.57079 0.785395 0.618995i \(-0.212460\pi\)
0.785395 + 0.618995i \(0.212460\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.88453 −0.853921
\(66\) 0 0
\(67\) 12.0730 1.47496 0.737478 0.675371i \(-0.236017\pi\)
0.737478 + 0.675371i \(0.236017\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.35640 1.11040 0.555200 0.831717i \(-0.312642\pi\)
0.555200 + 0.831717i \(0.312642\pi\)
\(72\) 0 0
\(73\) −7.79011 −0.911763 −0.455882 0.890040i \(-0.650676\pi\)
−0.455882 + 0.890040i \(0.650676\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −27.4296 −3.12590
\(78\) 0 0
\(79\) −10.3460 −1.16401 −0.582007 0.813184i \(-0.697732\pi\)
−0.582007 + 0.813184i \(0.697732\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.5114 −1.15378 −0.576888 0.816823i \(-0.695733\pi\)
−0.576888 + 0.816823i \(0.695733\pi\)
\(84\) 0 0
\(85\) −0.606959 −0.0658339
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.84500 −0.619569 −0.309785 0.950807i \(-0.600257\pi\)
−0.309785 + 0.950807i \(0.600257\pi\)
\(90\) 0 0
\(91\) −22.1867 −2.32580
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.40017 −0.143654
\(96\) 0 0
\(97\) 1.47372 0.149634 0.0748169 0.997197i \(-0.476163\pi\)
0.0748169 + 0.997197i \(0.476163\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.1856 −1.01351 −0.506754 0.862091i \(-0.669155\pi\)
−0.506754 + 0.862091i \(0.669155\pi\)
\(102\) 0 0
\(103\) −15.1903 −1.49674 −0.748371 0.663280i \(-0.769164\pi\)
−0.748371 + 0.663280i \(0.769164\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.6405 −1.22200 −0.611000 0.791631i \(-0.709232\pi\)
−0.611000 + 0.791631i \(0.709232\pi\)
\(108\) 0 0
\(109\) −4.28913 −0.410824 −0.205412 0.978676i \(-0.565853\pi\)
−0.205412 + 0.978676i \(0.565853\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.30757 0.781510 0.390755 0.920495i \(-0.372214\pi\)
0.390755 + 0.920495i \(0.372214\pi\)
\(114\) 0 0
\(115\) −1.39397 −0.129988
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.95604 −0.179310
\(120\) 0 0
\(121\) 25.9522 2.35929
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.2567 −1.00683
\(126\) 0 0
\(127\) −19.4653 −1.72726 −0.863631 0.504124i \(-0.831815\pi\)
−0.863631 + 0.504124i \(0.831815\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.8741 −1.29955 −0.649777 0.760125i \(-0.725138\pi\)
−0.649777 + 0.760125i \(0.725138\pi\)
\(132\) 0 0
\(133\) −4.51232 −0.391268
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.3924 1.14419 0.572096 0.820187i \(-0.306131\pi\)
0.572096 + 0.820187i \(0.306131\pi\)
\(138\) 0 0
\(139\) −18.9136 −1.60423 −0.802115 0.597169i \(-0.796292\pi\)
−0.802115 + 0.597169i \(0.796292\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 29.8892 2.49946
\(144\) 0 0
\(145\) 3.13395 0.260260
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.60023 0.704559 0.352279 0.935895i \(-0.385407\pi\)
0.352279 + 0.935895i \(0.385407\pi\)
\(150\) 0 0
\(151\) 5.23494 0.426013 0.213007 0.977051i \(-0.431674\pi\)
0.213007 + 0.977051i \(0.431674\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.79011 0.143785
\(156\) 0 0
\(157\) −16.4250 −1.31086 −0.655429 0.755257i \(-0.727512\pi\)
−0.655429 + 0.755257i \(0.727512\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.49233 −0.354045
\(162\) 0 0
\(163\) 1.27314 0.0997198 0.0498599 0.998756i \(-0.484123\pi\)
0.0498599 + 0.998756i \(0.484123\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.3520 −0.801059 −0.400530 0.916284i \(-0.631174\pi\)
−0.400530 + 0.916284i \(0.631174\pi\)
\(168\) 0 0
\(169\) 11.1761 0.859703
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −23.3181 −1.77284 −0.886422 0.462877i \(-0.846817\pi\)
−0.886422 + 0.462877i \(0.846817\pi\)
\(174\) 0 0
\(175\) −13.7153 −1.03678
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.322187 0.0240814 0.0120407 0.999928i \(-0.496167\pi\)
0.0120407 + 0.999928i \(0.496167\pi\)
\(180\) 0 0
\(181\) −22.4319 −1.66735 −0.833675 0.552255i \(-0.813768\pi\)
−0.833675 + 0.552255i \(0.813768\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.32862 0.391768
\(186\) 0 0
\(187\) 2.63511 0.192698
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.6440 −1.49375 −0.746873 0.664967i \(-0.768446\pi\)
−0.746873 + 0.664967i \(0.768446\pi\)
\(192\) 0 0
\(193\) 8.83614 0.636039 0.318020 0.948084i \(-0.396982\pi\)
0.318020 + 0.948084i \(0.396982\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.200510 0.0142857 0.00714286 0.999974i \(-0.497726\pi\)
0.00714286 + 0.999974i \(0.497726\pi\)
\(198\) 0 0
\(199\) 7.98534 0.566065 0.283033 0.959110i \(-0.408659\pi\)
0.283033 + 0.959110i \(0.408659\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.0998 0.708864
\(204\) 0 0
\(205\) 7.44613 0.520060
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.07883 0.420482
\(210\) 0 0
\(211\) 8.78731 0.604943 0.302472 0.953158i \(-0.402188\pi\)
0.302472 + 0.953158i \(0.402188\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.38957 0.162967
\(216\) 0 0
\(217\) 5.76897 0.391623
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.13143 0.143376
\(222\) 0 0
\(223\) −10.6935 −0.716091 −0.358045 0.933704i \(-0.616557\pi\)
−0.358045 + 0.933704i \(0.616557\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.3285 −1.08376 −0.541879 0.840456i \(-0.682287\pi\)
−0.541879 + 0.840456i \(0.682287\pi\)
\(228\) 0 0
\(229\) 19.4771 1.28708 0.643540 0.765413i \(-0.277465\pi\)
0.643540 + 0.765413i \(0.277465\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.2936 0.674354 0.337177 0.941441i \(-0.390528\pi\)
0.337177 + 0.941441i \(0.390528\pi\)
\(234\) 0 0
\(235\) −13.6071 −0.887630
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.16405 0.334034 0.167017 0.985954i \(-0.446586\pi\)
0.167017 + 0.985954i \(0.446586\pi\)
\(240\) 0 0
\(241\) 22.8636 1.47277 0.736386 0.676561i \(-0.236531\pi\)
0.736386 + 0.676561i \(0.236531\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.7077 1.19519
\(246\) 0 0
\(247\) 4.91692 0.312856
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.9140 −0.941366 −0.470683 0.882302i \(-0.655993\pi\)
−0.470683 + 0.882302i \(0.655993\pi\)
\(252\) 0 0
\(253\) 6.05189 0.380479
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.9266 −1.30537 −0.652684 0.757630i \(-0.726357\pi\)
−0.652684 + 0.757630i \(0.726357\pi\)
\(258\) 0 0
\(259\) 17.1725 1.06705
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.70238 0.598275 0.299137 0.954210i \(-0.403301\pi\)
0.299137 + 0.954210i \(0.403301\pi\)
\(264\) 0 0
\(265\) −6.59137 −0.404905
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.21963 −0.0743624 −0.0371812 0.999309i \(-0.511838\pi\)
−0.0371812 + 0.999309i \(0.511838\pi\)
\(270\) 0 0
\(271\) 21.8052 1.32457 0.662287 0.749251i \(-0.269586\pi\)
0.662287 + 0.749251i \(0.269586\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.4768 1.11419
\(276\) 0 0
\(277\) −21.9216 −1.31714 −0.658571 0.752518i \(-0.728839\pi\)
−0.658571 + 0.752518i \(0.728839\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.7242 0.818716 0.409358 0.912374i \(-0.365753\pi\)
0.409358 + 0.912374i \(0.365753\pi\)
\(282\) 0 0
\(283\) −1.85479 −0.110256 −0.0551279 0.998479i \(-0.517557\pi\)
−0.0551279 + 0.998479i \(0.517557\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23.9966 1.41647
\(288\) 0 0
\(289\) −16.8121 −0.988946
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.08440 0.180193 0.0900964 0.995933i \(-0.471282\pi\)
0.0900964 + 0.995933i \(0.471282\pi\)
\(294\) 0 0
\(295\) −11.4591 −0.667174
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.89513 0.283093
\(300\) 0 0
\(301\) 7.70085 0.443870
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 17.1776 0.983589
\(306\) 0 0
\(307\) 8.78559 0.501420 0.250710 0.968062i \(-0.419336\pi\)
0.250710 + 0.968062i \(0.419336\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −23.2902 −1.32066 −0.660332 0.750974i \(-0.729584\pi\)
−0.660332 + 0.750974i \(0.729584\pi\)
\(312\) 0 0
\(313\) −0.255589 −0.0144467 −0.00722336 0.999974i \(-0.502299\pi\)
−0.00722336 + 0.999974i \(0.502299\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.0915 −0.959954 −0.479977 0.877281i \(-0.659355\pi\)
−0.479977 + 0.877281i \(0.659355\pi\)
\(318\) 0 0
\(319\) −13.6060 −0.761790
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.433490 0.0241200
\(324\) 0 0
\(325\) 14.9451 0.829005
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −43.8516 −2.41762
\(330\) 0 0
\(331\) −6.90362 −0.379457 −0.189729 0.981837i \(-0.560761\pi\)
−0.189729 + 0.981837i \(0.560761\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.9043 0.923580
\(336\) 0 0
\(337\) 30.3357 1.65249 0.826245 0.563311i \(-0.190473\pi\)
0.826245 + 0.563311i \(0.190473\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.77174 −0.420863
\(342\) 0 0
\(343\) 28.7031 1.54982
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.1070 −1.18677 −0.593383 0.804921i \(-0.702208\pi\)
−0.593383 + 0.804921i \(0.702208\pi\)
\(348\) 0 0
\(349\) 24.7770 1.32628 0.663140 0.748495i \(-0.269223\pi\)
0.663140 + 0.748495i \(0.269223\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.6368 0.619363 0.309681 0.950840i \(-0.399778\pi\)
0.309681 + 0.950840i \(0.399778\pi\)
\(354\) 0 0
\(355\) 13.1006 0.695305
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.11123 0.480872 0.240436 0.970665i \(-0.422710\pi\)
0.240436 + 0.970665i \(0.422710\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.9075 −0.570923
\(366\) 0 0
\(367\) −23.8322 −1.24403 −0.622016 0.783005i \(-0.713686\pi\)
−0.622016 + 0.783005i \(0.713686\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −21.2420 −1.10283
\(372\) 0 0
\(373\) −2.47834 −0.128324 −0.0641618 0.997940i \(-0.520437\pi\)
−0.0641618 + 0.997940i \(0.520437\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.0054 −0.566805
\(378\) 0 0
\(379\) −2.61986 −0.134573 −0.0672865 0.997734i \(-0.521434\pi\)
−0.0672865 + 0.997734i \(0.521434\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 35.4838 1.81314 0.906569 0.422057i \(-0.138692\pi\)
0.906569 + 0.422057i \(0.138692\pi\)
\(384\) 0 0
\(385\) −38.4062 −1.95736
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.22515 0.417032 0.208516 0.978019i \(-0.433137\pi\)
0.208516 + 0.978019i \(0.433137\pi\)
\(390\) 0 0
\(391\) 0.431569 0.0218254
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.4861 −0.728876
\(396\) 0 0
\(397\) 5.19080 0.260519 0.130259 0.991480i \(-0.458419\pi\)
0.130259 + 0.991480i \(0.458419\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.19737 0.0597936 0.0298968 0.999553i \(-0.490482\pi\)
0.0298968 + 0.999553i \(0.490482\pi\)
\(402\) 0 0
\(403\) −6.28625 −0.313140
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −23.1342 −1.14672
\(408\) 0 0
\(409\) −4.70663 −0.232728 −0.116364 0.993207i \(-0.537124\pi\)
−0.116364 + 0.993207i \(0.537124\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −36.9292 −1.81717
\(414\) 0 0
\(415\) −14.7177 −0.722466
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.4557 0.950471 0.475236 0.879859i \(-0.342363\pi\)
0.475236 + 0.879859i \(0.342363\pi\)
\(420\) 0 0
\(421\) −9.23763 −0.450214 −0.225107 0.974334i \(-0.572273\pi\)
−0.225107 + 0.974334i \(0.572273\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.31760 0.0639131
\(426\) 0 0
\(427\) 55.3583 2.67898
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.37375 0.0661713 0.0330857 0.999453i \(-0.489467\pi\)
0.0330857 + 0.999453i \(0.489467\pi\)
\(432\) 0 0
\(433\) 9.50033 0.456557 0.228278 0.973596i \(-0.426690\pi\)
0.228278 + 0.973596i \(0.426690\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.995569 0.0476245
\(438\) 0 0
\(439\) 21.8188 1.04135 0.520677 0.853754i \(-0.325680\pi\)
0.520677 + 0.853754i \(0.325680\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.9065 −0.565695 −0.282848 0.959165i \(-0.591279\pi\)
−0.282848 + 0.959165i \(0.591279\pi\)
\(444\) 0 0
\(445\) −8.18400 −0.387959
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13.8050 0.651497 0.325748 0.945457i \(-0.394384\pi\)
0.325748 + 0.945457i \(0.394384\pi\)
\(450\) 0 0
\(451\) −32.3273 −1.52223
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −31.0652 −1.45636
\(456\) 0 0
\(457\) 4.69602 0.219671 0.109835 0.993950i \(-0.464968\pi\)
0.109835 + 0.993950i \(0.464968\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.7060 1.43012 0.715061 0.699062i \(-0.246399\pi\)
0.715061 + 0.699062i \(0.246399\pi\)
\(462\) 0 0
\(463\) 42.9295 1.99510 0.997552 0.0699288i \(-0.0222772\pi\)
0.997552 + 0.0699288i \(0.0222772\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.1851 −1.67445 −0.837224 0.546861i \(-0.815823\pi\)
−0.837224 + 0.546861i \(0.815823\pi\)
\(468\) 0 0
\(469\) 54.4774 2.51553
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.3743 −0.477011
\(474\) 0 0
\(475\) 3.03952 0.139463
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.100541 −0.00459382 −0.00229691 0.999997i \(-0.500731\pi\)
−0.00229691 + 0.999997i \(0.500731\pi\)
\(480\) 0 0
\(481\) −18.7123 −0.853208
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.06346 0.0936969
\(486\) 0 0
\(487\) 27.4446 1.24363 0.621816 0.783163i \(-0.286395\pi\)
0.621816 + 0.783163i \(0.286395\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 27.0350 1.22007 0.610037 0.792373i \(-0.291155\pi\)
0.610037 + 0.792373i \(0.291155\pi\)
\(492\) 0 0
\(493\) −0.970262 −0.0436984
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 42.2191 1.89379
\(498\) 0 0
\(499\) 27.3864 1.22598 0.612991 0.790090i \(-0.289966\pi\)
0.612991 + 0.790090i \(0.289966\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −41.6863 −1.85870 −0.929351 0.369198i \(-0.879632\pi\)
−0.929351 + 0.369198i \(0.879632\pi\)
\(504\) 0 0
\(505\) −14.2616 −0.634633
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.53948 0.289857 0.144929 0.989442i \(-0.453705\pi\)
0.144929 + 0.989442i \(0.453705\pi\)
\(510\) 0 0
\(511\) −35.1515 −1.55501
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −21.2690 −0.937223
\(516\) 0 0
\(517\) 59.0752 2.59813
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −45.2302 −1.98157 −0.990785 0.135443i \(-0.956754\pi\)
−0.990785 + 0.135443i \(0.956754\pi\)
\(522\) 0 0
\(523\) 33.4715 1.46361 0.731803 0.681517i \(-0.238679\pi\)
0.731803 + 0.681517i \(0.238679\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.554213 −0.0241419
\(528\) 0 0
\(529\) −22.0088 −0.956906
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −26.1483 −1.13261
\(534\) 0 0
\(535\) −17.6988 −0.765186
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −81.2196 −3.49837
\(540\) 0 0
\(541\) 18.8996 0.812557 0.406279 0.913749i \(-0.366826\pi\)
0.406279 + 0.913749i \(0.366826\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00551 −0.257248
\(546\) 0 0
\(547\) −40.7476 −1.74224 −0.871122 0.491067i \(-0.836607\pi\)
−0.871122 + 0.491067i \(0.836607\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.23826 −0.0953531
\(552\) 0 0
\(553\) −46.6844 −1.98522
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −38.9595 −1.65077 −0.825383 0.564573i \(-0.809041\pi\)
−0.825383 + 0.564573i \(0.809041\pi\)
\(558\) 0 0
\(559\) −8.39135 −0.354916
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 41.0964 1.73201 0.866004 0.500038i \(-0.166680\pi\)
0.866004 + 0.500038i \(0.166680\pi\)
\(564\) 0 0
\(565\) 11.6320 0.489362
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.23428 0.303277 0.151638 0.988436i \(-0.451545\pi\)
0.151638 + 0.988436i \(0.451545\pi\)
\(570\) 0 0
\(571\) −32.6729 −1.36732 −0.683659 0.729802i \(-0.739612\pi\)
−0.683659 + 0.729802i \(0.739612\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.02606 0.126195
\(576\) 0 0
\(577\) 17.0315 0.709030 0.354515 0.935050i \(-0.384646\pi\)
0.354515 + 0.935050i \(0.384646\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −47.4308 −1.96776
\(582\) 0 0
\(583\) 28.6164 1.18517
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −28.5192 −1.17711 −0.588557 0.808456i \(-0.700304\pi\)
−0.588557 + 0.808456i \(0.700304\pi\)
\(588\) 0 0
\(589\) −1.27849 −0.0526794
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5.49950 −0.225837 −0.112919 0.993604i \(-0.536020\pi\)
−0.112919 + 0.993604i \(0.536020\pi\)
\(594\) 0 0
\(595\) −2.73879 −0.112280
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −20.3464 −0.831331 −0.415665 0.909518i \(-0.636451\pi\)
−0.415665 + 0.909518i \(0.636451\pi\)
\(600\) 0 0
\(601\) −16.5825 −0.676415 −0.338207 0.941072i \(-0.609821\pi\)
−0.338207 + 0.941072i \(0.609821\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 36.3375 1.47733
\(606\) 0 0
\(607\) −36.9107 −1.49816 −0.749079 0.662480i \(-0.769504\pi\)
−0.749079 + 0.662480i \(0.769504\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 47.7836 1.93312
\(612\) 0 0
\(613\) −36.0386 −1.45558 −0.727792 0.685798i \(-0.759453\pi\)
−0.727792 + 0.685798i \(0.759453\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −25.1665 −1.01317 −0.506583 0.862191i \(-0.669091\pi\)
−0.506583 + 0.862191i \(0.669091\pi\)
\(618\) 0 0
\(619\) −41.9575 −1.68642 −0.843208 0.537588i \(-0.819336\pi\)
−0.843208 + 0.537588i \(0.819336\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −26.3745 −1.05667
\(624\) 0 0
\(625\) −0.563670 −0.0225468
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.64973 −0.0657790
\(630\) 0 0
\(631\) −24.4114 −0.971802 −0.485901 0.874014i \(-0.661509\pi\)
−0.485901 + 0.874014i \(0.661509\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −27.2547 −1.08157
\(636\) 0 0
\(637\) −65.6953 −2.60294
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28.4323 −1.12301 −0.561504 0.827474i \(-0.689777\pi\)
−0.561504 + 0.827474i \(0.689777\pi\)
\(642\) 0 0
\(643\) 38.8708 1.53292 0.766458 0.642295i \(-0.222018\pi\)
0.766458 + 0.642295i \(0.222018\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.0604 0.434829 0.217414 0.976079i \(-0.430238\pi\)
0.217414 + 0.976079i \(0.430238\pi\)
\(648\) 0 0
\(649\) 49.7496 1.95284
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.2832 −0.480678 −0.240339 0.970689i \(-0.577259\pi\)
−0.240339 + 0.970689i \(0.577259\pi\)
\(654\) 0 0
\(655\) −20.8262 −0.813748
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.4723 0.563762 0.281881 0.959449i \(-0.409042\pi\)
0.281881 + 0.959449i \(0.409042\pi\)
\(660\) 0 0
\(661\) −22.9169 −0.891365 −0.445683 0.895191i \(-0.647039\pi\)
−0.445683 + 0.895191i \(0.647039\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.31802 −0.245002
\(666\) 0 0
\(667\) −2.22834 −0.0862817
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −74.5767 −2.87900
\(672\) 0 0
\(673\) 5.74536 0.221467 0.110734 0.993850i \(-0.464680\pi\)
0.110734 + 0.993850i \(0.464680\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.7599 1.64340 0.821698 0.569923i \(-0.193027\pi\)
0.821698 + 0.569923i \(0.193027\pi\)
\(678\) 0 0
\(679\) 6.64991 0.255200
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.8394 0.873925 0.436963 0.899480i \(-0.356054\pi\)
0.436963 + 0.899480i \(0.356054\pi\)
\(684\) 0 0
\(685\) 18.7517 0.716464
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 23.1467 0.881818
\(690\) 0 0
\(691\) 10.9691 0.417282 0.208641 0.977992i \(-0.433096\pi\)
0.208641 + 0.977992i \(0.433096\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −26.4823 −1.00453
\(696\) 0 0
\(697\) −2.30530 −0.0873196
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12.8911 −0.486892 −0.243446 0.969914i \(-0.578278\pi\)
−0.243446 + 0.969914i \(0.578278\pi\)
\(702\) 0 0
\(703\) −3.80570 −0.143535
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −45.9608 −1.72854
\(708\) 0 0
\(709\) 2.67218 0.100356 0.0501780 0.998740i \(-0.484021\pi\)
0.0501780 + 0.998740i \(0.484021\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.27283 −0.0476678
\(714\) 0 0
\(715\) 41.8499 1.56510
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 28.4430 1.06074 0.530372 0.847765i \(-0.322052\pi\)
0.530372 + 0.847765i \(0.322052\pi\)
\(720\) 0 0
\(721\) −68.5434 −2.55269
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.80325 −0.252666
\(726\) 0 0
\(727\) 6.22594 0.230907 0.115454 0.993313i \(-0.463168\pi\)
0.115454 + 0.993313i \(0.463168\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.739805 −0.0273627
\(732\) 0 0
\(733\) −30.7155 −1.13450 −0.567251 0.823545i \(-0.691993\pi\)
−0.567251 + 0.823545i \(0.691993\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −73.3899 −2.70335
\(738\) 0 0
\(739\) −35.1503 −1.29303 −0.646513 0.762903i \(-0.723773\pi\)
−0.646513 + 0.762903i \(0.723773\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.3170 1.55246 0.776231 0.630449i \(-0.217129\pi\)
0.776231 + 0.630449i \(0.217129\pi\)
\(744\) 0 0
\(745\) 12.0418 0.441177
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −57.0378 −2.08412
\(750\) 0 0
\(751\) −4.04726 −0.147686 −0.0738432 0.997270i \(-0.523526\pi\)
−0.0738432 + 0.997270i \(0.523526\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.32981 0.266759
\(756\) 0 0
\(757\) 8.60653 0.312810 0.156405 0.987693i \(-0.450010\pi\)
0.156405 + 0.987693i \(0.450010\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.197419 −0.00715642 −0.00357821 0.999994i \(-0.501139\pi\)
−0.00357821 + 0.999994i \(0.501139\pi\)
\(762\) 0 0
\(763\) −19.3539 −0.700659
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.2405 1.45300
\(768\) 0 0
\(769\) 16.2221 0.584984 0.292492 0.956268i \(-0.405516\pi\)
0.292492 + 0.956268i \(0.405516\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.6353 1.17381 0.586906 0.809655i \(-0.300346\pi\)
0.586906 + 0.809655i \(0.300346\pi\)
\(774\) 0 0
\(775\) −3.88601 −0.139590
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.31802 −0.190538
\(780\) 0 0
\(781\) −56.8760 −2.03518
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.9978 −0.820826
\(786\) 0 0
\(787\) 49.9844 1.78175 0.890875 0.454248i \(-0.150092\pi\)
0.890875 + 0.454248i \(0.150092\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 37.4864 1.33286
\(792\) 0 0
\(793\) −60.3221 −2.14210
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41.4853 1.46949 0.734743 0.678346i \(-0.237303\pi\)
0.734743 + 0.678346i \(0.237303\pi\)
\(798\) 0 0
\(799\) 4.21273 0.149036
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 47.3548 1.67111
\(804\) 0 0
\(805\) −6.29002 −0.221694
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.2625 −0.782708 −0.391354 0.920240i \(-0.627993\pi\)
−0.391354 + 0.920240i \(0.627993\pi\)
\(810\) 0 0
\(811\) −19.6724 −0.690790 −0.345395 0.938457i \(-0.612255\pi\)
−0.345395 + 0.938457i \(0.612255\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.78261 0.0624420
\(816\) 0 0
\(817\) −1.70663 −0.0597073
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.2205 0.705701 0.352850 0.935680i \(-0.385213\pi\)
0.352850 + 0.935680i \(0.385213\pi\)
\(822\) 0 0
\(823\) 53.8546 1.87726 0.938628 0.344932i \(-0.112098\pi\)
0.938628 + 0.344932i \(0.112098\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.7204 1.20735 0.603674 0.797232i \(-0.293703\pi\)
0.603674 + 0.797232i \(0.293703\pi\)
\(828\) 0 0
\(829\) 12.0078 0.417048 0.208524 0.978017i \(-0.433134\pi\)
0.208524 + 0.978017i \(0.433134\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.79187 −0.200677
\(834\) 0 0
\(835\) −14.4945 −0.501603
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.2306 −0.732961 −0.366481 0.930426i \(-0.619437\pi\)
−0.366481 + 0.930426i \(0.619437\pi\)
\(840\) 0 0
\(841\) −23.9902 −0.827248
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.6485 0.538324
\(846\) 0 0
\(847\) 117.105 4.02376
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.78883 −0.129879
\(852\) 0 0
\(853\) −11.8153 −0.404550 −0.202275 0.979329i \(-0.564833\pi\)
−0.202275 + 0.979329i \(0.564833\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.4050 −0.970296 −0.485148 0.874432i \(-0.661234\pi\)
−0.485148 + 0.874432i \(0.661234\pi\)
\(858\) 0 0
\(859\) 10.7265 0.365982 0.182991 0.983115i \(-0.441422\pi\)
0.182991 + 0.983115i \(0.441422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 31.0745 1.05779 0.528894 0.848688i \(-0.322607\pi\)
0.528894 + 0.848688i \(0.322607\pi\)
\(864\) 0 0
\(865\) −32.6493 −1.11011
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 62.8915 2.13345
\(870\) 0 0
\(871\) −59.3622 −2.01141
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −50.7939 −1.71715
\(876\) 0 0
\(877\) 18.0091 0.608125 0.304063 0.952652i \(-0.401657\pi\)
0.304063 + 0.952652i \(0.401657\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.67751 0.123898 0.0619492 0.998079i \(-0.480268\pi\)
0.0619492 + 0.998079i \(0.480268\pi\)
\(882\) 0 0
\(883\) 47.3039 1.59190 0.795951 0.605361i \(-0.206971\pi\)
0.795951 + 0.605361i \(0.206971\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 44.9316 1.50865 0.754327 0.656498i \(-0.227963\pi\)
0.754327 + 0.656498i \(0.227963\pi\)
\(888\) 0 0
\(889\) −87.8335 −2.94584
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.71819 0.325207
\(894\) 0 0
\(895\) 0.451116 0.0150791
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.86160 0.0954397
\(900\) 0 0
\(901\) 2.04067 0.0679847
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −31.4085 −1.04405
\(906\) 0 0
\(907\) 51.1566 1.69863 0.849314 0.527889i \(-0.177016\pi\)
0.849314 + 0.527889i \(0.177016\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.5098 1.70660 0.853298 0.521424i \(-0.174599\pi\)
0.853298 + 0.521424i \(0.174599\pi\)
\(912\) 0 0
\(913\) 63.8970 2.11468
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −67.1166 −2.21639
\(918\) 0 0
\(919\) −14.1191 −0.465745 −0.232872 0.972507i \(-0.574812\pi\)
−0.232872 + 0.972507i \(0.574812\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −46.0047 −1.51426
\(924\) 0 0
\(925\) −11.5675 −0.380337
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −39.8715 −1.30814 −0.654071 0.756433i \(-0.726940\pi\)
−0.654071 + 0.756433i \(0.726940\pi\)
\(930\) 0 0
\(931\) −13.3610 −0.437891
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.68960 0.120663
\(936\) 0 0
\(937\) −11.8984 −0.388703 −0.194351 0.980932i \(-0.562260\pi\)
−0.194351 + 0.980932i \(0.562260\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 45.0217 1.46767 0.733833 0.679330i \(-0.237730\pi\)
0.733833 + 0.679330i \(0.237730\pi\)
\(942\) 0 0
\(943\) −5.29445 −0.172411
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −44.3289 −1.44050 −0.720249 0.693716i \(-0.755972\pi\)
−0.720249 + 0.693716i \(0.755972\pi\)
\(948\) 0 0
\(949\) 38.3034 1.24338
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 31.5516 1.02206 0.511028 0.859564i \(-0.329265\pi\)
0.511028 + 0.859564i \(0.329265\pi\)
\(954\) 0 0
\(955\) −28.9051 −0.935346
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 60.4309 1.95142
\(960\) 0 0
\(961\) −29.3655 −0.947273
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.3721 0.398272
\(966\) 0 0
\(967\) −17.5370 −0.563951 −0.281975 0.959422i \(-0.590990\pi\)
−0.281975 + 0.959422i \(0.590990\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.48813 −0.144031 −0.0720155 0.997404i \(-0.522943\pi\)
−0.0720155 + 0.997404i \(0.522943\pi\)
\(972\) 0 0
\(973\) −85.3443 −2.73601
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.3731 0.747771 0.373885 0.927475i \(-0.378025\pi\)
0.373885 + 0.927475i \(0.378025\pi\)
\(978\) 0 0
\(979\) 35.5308 1.13557
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.70211 0.0542889 0.0271444 0.999632i \(-0.491359\pi\)
0.0271444 + 0.999632i \(0.491359\pi\)
\(984\) 0 0
\(985\) 0.280747 0.00894536
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.69906 −0.0540271
\(990\) 0 0
\(991\) 58.4569 1.85694 0.928472 0.371402i \(-0.121123\pi\)
0.928472 + 0.371402i \(0.121123\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.1808 0.354456
\(996\) 0 0
\(997\) −44.1576 −1.39848 −0.699242 0.714885i \(-0.746479\pi\)
−0.699242 + 0.714885i \(0.746479\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.ce.1.5 6
3.2 odd 2 8208.2.a.cf.1.2 6
4.3 odd 2 4104.2.a.s.1.5 6
12.11 even 2 4104.2.a.t.1.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.s.1.5 6 4.3 odd 2
4104.2.a.t.1.2 yes 6 12.11 even 2
8208.2.a.ce.1.5 6 1.1 even 1 trivial
8208.2.a.cf.1.2 6 3.2 odd 2