Properties

Label 8208.2.a.ce
Level $8208$
Weight $2$
Character orbit 8208.a
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-2,0,-2,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 18x^{4} + 17x^{3} + 72x^{2} + 29x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} - \beta_{4} q^{7} + (\beta_{3} + \beta_1 - 1) q^{11} - \beta_{5} q^{13} + (\beta_{4} - \beta_{3} - \beta_1 - 1) q^{17} - q^{19} + (\beta_{5} + \beta_{4} + \beta_1) q^{23} + ( - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{25}+ \cdots + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{5} - 2 q^{7} - 3 q^{11} + q^{13} - 7 q^{17} - 6 q^{19} + 3 q^{23} + 10 q^{25} + 6 q^{29} - 5 q^{31} - 3 q^{35} + 11 q^{37} - 9 q^{41} - 7 q^{43} - 7 q^{47} + 20 q^{49} - 11 q^{53} - 22 q^{55}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 18x^{4} + 17x^{3} + 72x^{2} + 29x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 5\nu^{4} + 11\nu^{3} - 50\nu^{2} - 22\nu - 3 ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + 5\nu^{4} + 11\nu^{3} - 62\nu^{2} - 10\nu + 69 ) / 12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - \nu^{4} - 23\nu^{3} + 6\nu^{2} + 122\nu + 51 ) / 12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5\nu^{5} - 13\nu^{4} - 79\nu^{3} + 130\nu^{2} + 242\nu + 3 ) / 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + \beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 3\beta_{4} + \beta_{3} + \beta_{2} + 13\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{5} - 6\beta_{4} - 8\beta_{3} + 17\beta_{2} + 25\beta _1 + 75 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 26\beta_{5} - 63\beta_{4} + 21\beta_{3} + 34\beta_{2} + 196\beta _1 + 149 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.27383
2.93526
0.0851277
−0.611152
−1.40017
−3.28289
0 0 0 −4.27383 0 1.76802 0 0 0
1.2 0 0 0 −2.93526 0 −1.89965 0 0 0
1.3 0 0 0 −0.0851277 0 −5.11790 0 0 0
1.4 0 0 0 0.611152 0 1.35784 0 0 0
1.5 0 0 0 1.40017 0 4.51232 0 0 0
1.6 0 0 0 3.28289 0 −2.62063 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8208.2.a.ce 6
3.b odd 2 1 8208.2.a.cf 6
4.b odd 2 1 4104.2.a.s 6
12.b even 2 1 4104.2.a.t yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4104.2.a.s 6 4.b odd 2 1
4104.2.a.t yes 6 12.b even 2 1
8208.2.a.ce 6 1.a even 1 1 trivial
8208.2.a.cf 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8208))\):

\( T_{5}^{6} + 2T_{5}^{5} - 18T_{5}^{4} - 17T_{5}^{3} + 72T_{5}^{2} - 29T_{5} - 3 \) Copy content Toggle raw display
\( T_{7}^{6} + 2T_{7}^{5} - 29T_{7}^{4} - 41T_{7}^{3} + 165T_{7}^{2} + 116T_{7} - 276 \) Copy content Toggle raw display
\( T_{11}^{6} + 3T_{11}^{5} - 45T_{11}^{4} - 88T_{11}^{3} + 601T_{11}^{2} + 572T_{11} - 2608 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 2 T^{5} + \cdots - 3 \) Copy content Toggle raw display
$7$ \( T^{6} + 2 T^{5} + \cdots - 276 \) Copy content Toggle raw display
$11$ \( T^{6} + 3 T^{5} + \cdots - 2608 \) Copy content Toggle raw display
$13$ \( T^{6} - T^{5} + \cdots - 684 \) Copy content Toggle raw display
$17$ \( T^{6} + 7 T^{5} + \cdots + 384 \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 3 T^{5} + \cdots - 864 \) Copy content Toggle raw display
$29$ \( T^{6} - 6 T^{5} + \cdots + 456 \) Copy content Toggle raw display
$31$ \( T^{6} + 5 T^{5} + \cdots - 6256 \) Copy content Toggle raw display
$37$ \( T^{6} - 11 T^{5} + \cdots + 11696 \) Copy content Toggle raw display
$41$ \( T^{6} + 9 T^{5} + \cdots + 192 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots + 4364 \) Copy content Toggle raw display
$47$ \( T^{6} + 7 T^{5} + \cdots + 11906 \) Copy content Toggle raw display
$53$ \( T^{6} + 11 T^{5} + \cdots + 86508 \) Copy content Toggle raw display
$59$ \( T^{6} + 17 T^{5} + \cdots + 282816 \) Copy content Toggle raw display
$61$ \( T^{6} - 17 T^{5} + \cdots - 55112 \) Copy content Toggle raw display
$67$ \( T^{6} - 4 T^{5} + \cdots - 111744 \) Copy content Toggle raw display
$71$ \( T^{6} - 10 T^{5} + \cdots + 69984 \) Copy content Toggle raw display
$73$ \( T^{6} - 18 T^{5} + \cdots - 183972 \) Copy content Toggle raw display
$79$ \( T^{6} + 27 T^{5} + \cdots - 496 \) Copy content Toggle raw display
$83$ \( T^{6} + 34 T^{5} + \cdots - 16844 \) Copy content Toggle raw display
$89$ \( T^{6} + 18 T^{5} + \cdots + 18306 \) Copy content Toggle raw display
$97$ \( T^{6} - 8 T^{5} + \cdots + 57168 \) Copy content Toggle raw display
show more
show less