Properties

Label 2-81144-1.1-c1-0-19
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 3·13-s + 3·17-s − 23-s + 4·25-s + 6·29-s + 2·31-s − 4·37-s + 8·41-s + 4·43-s + 11·47-s + 11·53-s + 12·59-s + 12·61-s + 9·65-s − 3·67-s + 5·71-s + 15·73-s + 8·79-s + 12·83-s − 9·85-s − 6·89-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.832·13-s + 0.727·17-s − 0.208·23-s + 4/5·25-s + 1.11·29-s + 0.359·31-s − 0.657·37-s + 1.24·41-s + 0.609·43-s + 1.60·47-s + 1.51·53-s + 1.56·59-s + 1.53·61-s + 1.11·65-s − 0.366·67-s + 0.593·71-s + 1.75·73-s + 0.900·79-s + 1.31·83-s − 0.976·85-s − 0.635·89-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.979639472\)
\(L(\frac12)\) \(\approx\) \(1.979639472\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.06701678401506, −13.56652873058442, −12.78965510668241, −12.35018433519310, −11.99404820606669, −11.71744588798440, −10.92232504507248, −10.63989961883129, −9.926573978912229, −9.564561960779375, −8.784689318571381, −8.345322574649211, −7.871060755219778, −7.374339199308473, −6.973501711957104, −6.359151730782057, −5.502924615324052, −5.178675716436557, −4.368257659456018, −3.966788948216950, −3.482993649718513, −2.616522611894537, −2.250814546305415, −0.9455042438166926, −0.5886141418478428, 0.5886141418478428, 0.9455042438166926, 2.250814546305415, 2.616522611894537, 3.482993649718513, 3.966788948216950, 4.368257659456018, 5.178675716436557, 5.502924615324052, 6.359151730782057, 6.973501711957104, 7.374339199308473, 7.871060755219778, 8.345322574649211, 8.784689318571381, 9.564561960779375, 9.926573978912229, 10.63989961883129, 10.92232504507248, 11.71744588798440, 11.99404820606669, 12.35018433519310, 12.78965510668241, 13.56652873058442, 14.06701678401506

Graph of the $Z$-function along the critical line