L(s) = 1 | + (−0.257 + 1.39i)2-s + (−1.66 + 1.66i)3-s + (−1.86 − 0.715i)4-s + (−0.707 − 0.707i)5-s + (−1.88 − 2.74i)6-s + 2.89i·7-s + (1.47 − 2.41i)8-s − 2.53i·9-s + (1.16 − 0.801i)10-s + (1.84 + 1.84i)11-s + (4.29 − 1.91i)12-s + (−3.08 + 3.08i)13-s + (−4.02 − 0.744i)14-s + 2.35·15-s + (2.97 + 2.67i)16-s + 7.29·17-s + ⋯ |
L(s) = 1 | + (−0.181 + 0.983i)2-s + (−0.960 + 0.960i)3-s + (−0.933 − 0.357i)4-s + (−0.316 − 0.316i)5-s + (−0.769 − 1.11i)6-s + 1.09i·7-s + (0.521 − 0.853i)8-s − 0.845i·9-s + (0.368 − 0.253i)10-s + (0.556 + 0.556i)11-s + (1.24 − 0.553i)12-s + (−0.854 + 0.854i)13-s + (−1.07 − 0.198i)14-s + 0.607·15-s + (0.744 + 0.667i)16-s + 1.77·17-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(−0.943−0.332i)Λ(2−s)
Λ(s)=(=(80s/2ΓC(s+1/2)L(s)(−0.943−0.332i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
−0.943−0.332i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(21,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1/2), −0.943−0.332i)
|
Particular Values
L(1) |
≈ |
0.0928056+0.542761i |
L(21) |
≈ |
0.0928056+0.542761i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.257−1.39i)T |
| 5 | 1+(0.707+0.707i)T |
good | 3 | 1+(1.66−1.66i)T−3iT2 |
| 7 | 1−2.89iT−7T2 |
| 11 | 1+(−1.84−1.84i)T+11iT2 |
| 13 | 1+(3.08−3.08i)T−13iT2 |
| 17 | 1−7.29T+17T2 |
| 19 | 1+(1.23−1.23i)T−19iT2 |
| 23 | 1+4.60iT−23T2 |
| 29 | 1+(−4.24+4.24i)T−29iT2 |
| 31 | 1−2.06T+31T2 |
| 37 | 1+(1.17+1.17i)T+37iT2 |
| 41 | 1−4.61iT−41T2 |
| 43 | 1+(−3.03−3.03i)T+43iT2 |
| 47 | 1+11.7T+47T2 |
| 53 | 1+(−2.73−2.73i)T+53iT2 |
| 59 | 1+(−3.11−3.11i)T+59iT2 |
| 61 | 1+(−2.34+2.34i)T−61iT2 |
| 67 | 1+(−8.24+8.24i)T−67iT2 |
| 71 | 1+3.25iT−71T2 |
| 73 | 1−12.6iT−73T2 |
| 79 | 1+0.113T+79T2 |
| 83 | 1+(−9.76+9.76i)T−83iT2 |
| 89 | 1+3.74iT−89T2 |
| 97 | 1+13.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.04916599349838158583265460202, −14.37562126627049743189675909840, −12.45321322321811966929187599860, −11.77723480016359803312400669645, −10.10380359667736535198896798707, −9.403617648452073117310403902371, −8.069692462943350046187945433367, −6.43794282742513278656978756327, −5.29175108229792716368871042827, −4.35940089717309867763327357861,
0.931318203892303528770484283224, 3.47612250454271593007340283161, 5.34867073685228489067700649992, 7.04414505515548922092027906268, 8.009191967631877203615173692207, 9.902504592126109091657337519928, 10.82141117770155749271078176380, 11.81293069923267595563058990473, 12.50592131344513304143180107662, 13.57834604514510988001453272074