L(s) = 1 | + (−0.257 − 1.39i)2-s + (−1.66 − 1.66i)3-s + (−1.86 + 0.715i)4-s + (−0.707 + 0.707i)5-s + (−1.88 + 2.74i)6-s − 2.89i·7-s + (1.47 + 2.41i)8-s + 2.53i·9-s + (1.16 + 0.801i)10-s + (1.84 − 1.84i)11-s + (4.29 + 1.91i)12-s + (−3.08 − 3.08i)13-s + (−4.02 + 0.744i)14-s + 2.35·15-s + (2.97 − 2.67i)16-s + 7.29·17-s + ⋯ |
L(s) = 1 | + (−0.181 − 0.983i)2-s + (−0.960 − 0.960i)3-s + (−0.933 + 0.357i)4-s + (−0.316 + 0.316i)5-s + (−0.769 + 1.11i)6-s − 1.09i·7-s + (0.521 + 0.853i)8-s + 0.845i·9-s + (0.368 + 0.253i)10-s + (0.556 − 0.556i)11-s + (1.24 + 0.553i)12-s + (−0.854 − 0.854i)13-s + (−1.07 + 0.198i)14-s + 0.607·15-s + (0.744 − 0.667i)16-s + 1.77·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.943 + 0.332i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.943 + 0.332i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0928056 - 0.542761i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0928056 - 0.542761i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.257 + 1.39i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 + (1.66 + 1.66i)T + 3iT^{2} \) |
| 7 | \( 1 + 2.89iT - 7T^{2} \) |
| 11 | \( 1 + (-1.84 + 1.84i)T - 11iT^{2} \) |
| 13 | \( 1 + (3.08 + 3.08i)T + 13iT^{2} \) |
| 17 | \( 1 - 7.29T + 17T^{2} \) |
| 19 | \( 1 + (1.23 + 1.23i)T + 19iT^{2} \) |
| 23 | \( 1 - 4.60iT - 23T^{2} \) |
| 29 | \( 1 + (-4.24 - 4.24i)T + 29iT^{2} \) |
| 31 | \( 1 - 2.06T + 31T^{2} \) |
| 37 | \( 1 + (1.17 - 1.17i)T - 37iT^{2} \) |
| 41 | \( 1 + 4.61iT - 41T^{2} \) |
| 43 | \( 1 + (-3.03 + 3.03i)T - 43iT^{2} \) |
| 47 | \( 1 + 11.7T + 47T^{2} \) |
| 53 | \( 1 + (-2.73 + 2.73i)T - 53iT^{2} \) |
| 59 | \( 1 + (-3.11 + 3.11i)T - 59iT^{2} \) |
| 61 | \( 1 + (-2.34 - 2.34i)T + 61iT^{2} \) |
| 67 | \( 1 + (-8.24 - 8.24i)T + 67iT^{2} \) |
| 71 | \( 1 - 3.25iT - 71T^{2} \) |
| 73 | \( 1 + 12.6iT - 73T^{2} \) |
| 79 | \( 1 + 0.113T + 79T^{2} \) |
| 83 | \( 1 + (-9.76 - 9.76i)T + 83iT^{2} \) |
| 89 | \( 1 - 3.74iT - 89T^{2} \) |
| 97 | \( 1 + 13.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.57834604514510988001453272074, −12.50592131344513304143180107662, −11.81293069923267595563058990473, −10.82141117770155749271078176380, −9.902504592126109091657337519928, −8.009191967631877203615173692207, −7.04414505515548922092027906268, −5.34867073685228489067700649992, −3.47612250454271593007340283161, −0.931318203892303528770484283224,
4.35940089717309867763327357861, 5.29175108229792716368871042827, 6.43794282742513278656978756327, 8.069692462943350046187945433367, 9.403617648452073117310403902371, 10.10380359667736535198896798707, 11.77723480016359803312400669645, 12.45321322321811966929187599860, 14.37562126627049743189675909840, 15.04916599349838158583265460202